UTILIZATION OF DRY ERUCARIA PLANT RESIDUES AS A NOVEL ADSORBENT FOR METHYLENE BLUE DYE: EXPERIMENTAL INVESTIGATION AND MODELING

Authors

  • سليمة عبدالله عبجه قسم الكيمياء، كلية العلوم، جامعة ، مصراته - ليبيا
  • علي محمد الهليب قسم الكيمياء ، كلية العلوم ، الجامعة الأسمرية الإسلامية ، زليتن- ليبيا
  • خالد عبدالمجيد سويب قسم الكيمياء، كلية العلوم، جامعة ، مصراته - ليبيا
  • هدي جمعة التكروني قسم الكيمياء، كلية العلوم، جامعة ، مصراته - ليبيا
  • سهام علي اشكاب قسم الكيمياء، كلية العلوم، جامعة ، مصراته - ليبيا
  • عبدالفتاح محمد الخراز قسم الكيمياء، كلية العلوم، جامعة ، مصراته - ليبيا
  • خالد مفتاح الشريف الهيئة الليبية للبحث العلمي، طرابلس- ليبيا

Keywords:

Adsorption, Methylene blue dye, Erucaria plant, Factors affecting adsorption

Abstract

The aim of this research was to study the ability of dry Erucaria plant residues to adsorb methylene blue dye from aqueous solutions. A UV-Vis spectrophotometer was used to determine the dye concentration in the solution before and after the adsorption process. The effect of several factors on the adsorption efficiency was also studied, such as: contact time between the adsorbent and the dye, amount of adsorbent used in the adsorption, particle size of the adsorbent, initial concentration of the dye in the solution, and temperature of the solution. The results showed that the adsorption process occurs very quickly, where equilibrium between the dye concentration in the solution and on the surface of the adsorbent is reached within only 15 minutes. The results also showed that the adsorption capacity decreases with increasing amount of adsorbent, and that the particle size does not affect the adsorption capacity significantly. In addition, the results indicated that the Freundlich isotherm describes the equilibrium relationship between the dye concentration in the solution and on the surface of the adsorbent better than the Langmuir isotherm. Finally, the results suggested that the adsorption process is exothermic, meaning that the temperature of the solution affects negatively on the adsorption capacity, and that this process is spontaneous from a thermodynamic point of view.

References

El Hashani, A., Ben Khayal, N., & Elsherif, K. M. (2018). Selective transport of aromatic compounds across parchment supported Prussian blue membrane. Chemical Methodologies, 2, 194-203

Egwuatu, C. I., Okafor, P. C., Ndubuisi, J. O., & Ezeagwu, P. C. (2023). Optimized adsorption of Pb(II) ion from aqueous solution using sharp sand: ANN and RSM modelling. Asian Journal of Applied Chemistry Research, 14(2), 1-15

Alkherraz, A. M., Elsherif, K. M., El-Dali, A., Blayblo, N. A., & Sasi, M. (2022). Thermodynamic, equilibrium, and kinetic studies of safranin adsorption onto carpobrotus edulis. Asian Journal of Nanoscience and Materials, 5, 118-131.

Elsherif, K. M., El-Dali, A., Alkarewi, A. A., Ewlad-Ahmed, A. M., & Treban, A. (2021). Adsorption of crystal violet dye onto olive leaves powder: Equilibrium and kinetic studies. Chemistry International, 7(2), 79-89.

Abate, G. Y., Nguyen, D. T. A., Alene, A. N., Kassie, D. A., Addiss, Y. A., & Mintesinot, S. M. (2023). Cereal based traditional beverage of tella residue (attela) as a green organic pollutant sorbent for methylene blue dye removal: Equilibrium, kinetics and thermodynamic studies. Indian Journal of Chemical Technology, 30, 151-164.

Benkhaled, A., Senator, A. (2015). Effects of aqueous leaf extract of Limoniastrum guyonianum pretreatment on nickel induced acute heamatotoxicity in male mice. Global Veterinaria, 15(5), 493-497.

Elsherif, K. M., Yaghi, M. M. (2017). Studies with model membrane: The effect of temperature on membrane potential. Moroccan Journal of Chemistry, 5(1), 131-138.

Nikman, K. A., Ahmad, F., & Hassan, M. S. (2018). Removal of methylene blue from aqueous solution using cocoa (Theobroma cacao) nib-based activated carbon treated with hydrochloric acid. Malaysian Journal of Fundamental and Applied Sciences, 14(2), 193-197.

Liu, Y., & Liu, Y. J. (2008). Biosorption isotherms, kinetics and thermodynamics. Separation and Purification Technology, 61, 229-242.

Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, Y. H., Indraswati, N., & Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials, 162, 616-645.

Alkherraz, A. M., Elsherif, K. M., Blayblo, N. A., & Safranin adsorption onto Acasia plant derived activated carbon: Isotherms, thermodynamics and kinetic studies. Chemistry International, 9(4), 134-145.

Dabin, G., Li, Y., Cui, B., Hu, M., Luo, S., Ji, B., & Liu, Y. (2020). Natural adsorption of methylene blue by waste fallen leaves of Magnoliaceae and its repeated thermal regeneration for reuse. Journal of Cleaner Production, 267, 121903.

Doğan, M., Abak, H., & Alkan, M. (2009). Adsorption of methylene blue onto hazelnut shell: Kinetics, mechanism and activation parameters. Journal of hazardous materials, 164(1), 172–181.

Gülen, J., & Zorbay, F. (2017). Methylene Blue Adsorption on a Low Cost Adsorbent—Carbonized Peanut Shell. Water Environment Research, 89(9), 805-816.

Gouamid, M., Ouahrani, M. R., & Bensaci, M. B. (2013). Adsorption Equilibrium, Kinetics and Thermodynamics of Methylene Blue from Aqueous Solutions using Date Palm Leaves. Energy Procedia, 36, 898-907.

Ekrami, E., Dadashian, F., & Arami, M. (2016). Adsorption of methylene blue by waste cotton activated carbon: equilibrium, kinetics, and thermodynamic studies. Desalination and Water Treatment, 57, 7098-7108.

Lonappan, L., Rouissi, T., Das, R. K., Brar, S. K., Ramirez, A. A., Verma, M., Surampalli, R. Y., & Valero, J. R. (2016). Adsorption of methylene blue on biochar microparticles derived from different waste materials. Waste management (New York, N.Y.), 49, 537–544.

Nworie, F. S., Nwabue, F. I., Oti, W., Mbam, E., & Nwali, B. U. (2019). Removal of methylene blue from aqueous solution using activated rice husk biochar: adsorption isotherms, kinetics and error analysis. Journal of Chilean Chemical Society, 64(1), 4365-4376.

Elsherif, K. M., El-Dali, A., Ewlad-Ahmed, A. M., Treban, A. A., Alqadhi, H., Alkarewi, S. (2022). Kinetics and Isotherms Studies of Safranin Adsorption onto Two Surfaces Prepared from Orange Peels. Moroccan Journal of Chemistry, 10(4), 639-651.

Alkherraz, A. M., Ali, A. K., Elsherif, K. M. (2020). Equilibrium and thermodynamic studies of Pb(II), Zn(II), Cu(II) and Cd(II) adsorption onto mesembryanthemum activated carbon. Journal of Medicinal and Chemical Sciences, 3(1), 1-10.

Alkherraz, A. M., Ali, A. K., El-Dali, A., Elsherif, K. M. (2019). Biosorption Study of Zn(II), Cu(II), Pb(II) And Cd(II) Ions by Palm Leaves Activated Carbon. To Chemistry Journal, 4, 8-17.

Igwegbe, C. A., Banach, A. M., Ahmadi, S. (2018). Adsorption of Reactive Blue19 from Aqueous Environment on Magnesiumoxide Nanoparticles: Kinetic, Isotherm and Thermodynamic Studies. The Pharmaceutical and Chemical Journal, 5(5), 111-121.

Elsherif, K. M., Haider, I., El-Hashani, A. (2019). Adsorption of Co (II) Ions from Aqueous Solution onto Tea and Coffee Powder: Equilibrium and Kinetic Studies. Journal of Fundamental and Applied Sciences, 11(1), 65-81.

Chojnacka, K., Chojnacki, A., & Go´recka, H. (2005). Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere, 59, 75–84.

Elsherif, K. M., El-Hashani, A., Haider, I. (2018). Equilibrium and Kinetic Studies of Cu (II) Biosorption Onto Waste Tea and Coffee Powder (WTCP). Iranian Journal of Analytical Chemistry, 5(2), 31-38.

Elsherif, K. M., El-Hashani, A., Haider, I. (2018). Biosorption of Fe (III) onto coffee and tea powder: Equilibrium and kinetic study. Asian Journal of Green Chemistry, 2(4), 380-394.

Raghav, S., & Kumar, D. (2018). Adsorption Equilibrium, Kinetics, and Thermodynamic Studies of Fluoride Adsorbed by Tetrametallic Oxide Adsorbent. Journal of Chemical Engineering Data, 63(5), 1682–169

Mustapha, S., Shuaib, D. T., Ndamitso, M. M., et al. (2019). Adsorption isotherm, kinetic and thermodynamic studies for the removal of Pb(II), Cd(II), Zn(II) and Cu(II) ions from aqueous solutions using Albizia lebbeck pods. Applied Water Science, 9, 142.

Downloads

Published

2024-06-30

Issue

Section

Article

How to Cite

UTILIZATION OF DRY ERUCARIA PLANT RESIDUES AS A NOVEL ADSORBENT FOR METHYLENE BLUE DYE: EXPERIMENTAL INVESTIGATION AND MODELING (عبجه س. ع., الهليب ع. م., سويب خ. ع., التكروني ه. ج., اشكاب س. ع., الخراز ع. م., & الشريف خ. م. , Trans.). (2024). Journal of Basic Sciences, 37(1), 78-97. https://journals.asmarya.edu.ly/jbs/index.php/jbs/article/view/250

Similar Articles

1-10 of 25

You may also start an advanced similarity search for this article.