Role of Salicylic Acid in Systemic Resistance induced by Pseudomonas Fluorescens and Trichoderma harzianum Against Fusarium soluniun Tomato
Keywords:
Pseudomonas fluorescens, Trichodermaharzianum, Salicyl, ic acid, FusariumsolaniAbstract
Tomato growers are suffering all over the world from massive losses due
to root rot diseases,the study aims mainly to study the effect of treatment
with many safe fungal and bacterial biological control agents as indica-
tive signal particles to induce host systemic resistance under greenhouse
conditions. Some essential parameters and evidences of resistance were
determined, i.e. accumulation of salicylic acid (SA).
One week after inoculation tomato seedlings with F. solani, previously
pretreated with the tested biological inducers, endogenous SA content
showed significant increase in all the tested cultivars. Moreover, SA con-
tent in resistant cvs were higher, compared with susceptible cvs(1.04-fold
over that of susceptible cv).
References
Abd El- Khair, H., and El-Mougy, N. S. 2003 Field biological ap-proach under organic cultivation conditions for controlling garlic black mould disease infection during storage. Egypt. J. Appl. Sci., 18 (6): 50-69.
Agrawal, G.K., Rakwal, R., and Yonekura, M. 2002. Proteome analy-sis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedlings. Proteomics, 2: 947–959.
Audenaert, K.,Pattery,T.,Cornelis,P., Hofte, M. (2002): Induction of systemic resistance to Botrytis cinereain tomato by Pseudomonas ae-ruginosa7NSK2: role of salicylic acid, pyochelin and pyocyanin. Mol. Plant Microb. Inter.15, 147–1156.
]4] Baraka, M., Mohamed, I. N., El-Nabi, H. M., and Ismail,M. I. 2004. Biological control of damping-off and root rots of tomato. Agric. Res. J. Suez Canal University, 3:115-122.
Benhamou, N., Gagne, S., Quere, D. L., Debhi, L. (2000): Bacterial-mediated induced resistance in cucumber: beneficial effect of the endo-phytic bacterium Serratiaplymuthicaon the protection against infection by Pythiumultimum. Phytopathology 90, 45–56.
Blanco, F., Salinas, P., Cecchini, N. M., Jordana, X., Van Hummelen, P., Alvarez, M.E., and Holuigue, L. 2009. Early genomic responses to salicylic acid in Arabidopsis. Plant Mol. Biol., 70:79–102.
Caihong, H., and Qian, Y. 2007. Advances in biocontrol mechanism and application of Trichodermaspp. for plant diseases. J. Northeast Agri-cultural University, 14 (2): 161-167.
Chen, C., B´elanger, R.R., Benhamou, N., and Paulitz, T.C. 1998. In-duced systemic resistance (ISR) by Pseudomonas spp. impairs pre- and post-infection development of Pythiumaphanidermatumon cucumber roots.Eur. J. Plant Pathol.,104: 877–886.
Conrath, U., Chen, Z., Ricigliano, J. R., and Klessig, D. F. 1995. Two inducers of plant defense responses, 2, 6-dichloroisonicotinic acid and salicylic acid, inhibit catalase activity in tobacco. Plant Biology, 92:7143-7147.
D. L., Alexander, D. C., Ahl-Goy, P., Metraux, J. P., Ryals, J. (1991):Coordinate gene activity in response to agents that induce sys-temic acquired resistance. Plant Cell 3, 1085–1094.
De Meyer G and Höfte M 1997.Salicylic acid produced by the rhi-zobacteriumPseudomonas aeruginosa7NSK2 induced resistance to leaf infection by Botrytis cinereaon bean. Phytopathol. 87, 588-593.
De Meyer, G., and Höfte, M. 1997. Salicylic acid produced by the rhizobacteriumPseudomonas aeruginosa7NSK2 induces resistance to leaf infection by Botrytis cinereaon bean. Phytopathology 87:588-593.
Enyedi, A. J., Yalpani, N., Silverman, P., and Raskin, I. 1992. Loca-lization, conjugation, and function of salicylic acid in tobacco during the hypersensitive reaction to tobacco mosaic virus. Proc. Natl. Acad. Sci. U.S.A., 89:2480-2484.
Glick, B. R. (1995): The enhancement of plant growth by freeliving bacteria. Can. J. Microbiol. 41, 109–117.
Hadi, M. R., and Balali, G. R. 2010. The effect of salicylic acid on the reduction of Rizoctoniasolanidamage in the tubers of Marfona potato cultivar. American-Eurasian J. Agric. Environ. Sci., 7 (4): 492-496.
Hammerschmidt, R., Smith-Becker, J. A. (2000): The role of salicyl-ic acid in disease resistance. In Mechanisms of Resistance to Plant Dis-eases (Eds: Slusarenko, A., Fraser, R. S. S., Van Loon, L. C.), Pp. 37–53, Kluwer Academic Publisher.
Hammerschmidt, R., Smith-Becker, J. A. (2000): The role of salicyl-ic acid in disease resistance. In Mechanisms of Resistance to Plant Dis-eases (Eds: Slusarenko, A., Fraser, R. S. S., Van Loon, L. C.), Pp. 37–53, Kluwer Academic Publisher.
Hoffland, E., Hakulinen, J., Van Pelt, J. A. (1996): Comparison of systemic resistance induced by a virulent and nonpathogenic Pseudomo-nas species. Phytopathology 86,757–762.
Kauss, H., Jeblick, W. (1996): Influence of salicylic acid on the in-duction of competence for H2O2 elicitation: comparison of ergosterol with other elicitors. Pl. Physiol. 111,755–763.
Kubota, M and Nasik. Salicylic acid accumulates in the roots and hypocotyl after inoculation of cucumber leaves with Colletotrichumlage-narium. Journal of Plant Physiology 163 (2006) 1111—1117.
Kwack, M. S., Park, S., Jeun, Y., Kim, K. D. (2002): Selection and efficacy of soil bacteria inducing systemic resistance against Colletotri-chumorbiculareon cucumber. Mycobiology30, 31–36.
Leeman , M., Den ouden , F. M., Van pelt , J. A., Dirkx , F. P. M., Steijl , H., Bakker R, P. A. H. M. and Schippers , B. 1996. Iron availabil-ity affects induction of systemic resistance to fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology, 86: 149-155.
Leeman, M., Den Ouden, F. M., van Pelt, J. A., Dirkx, F. P. M., Steijl, H., Bakker, P. A. H. M., and Schippers, B. 1996. Iron availability affects induction of systemic resistance to fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149-155.
Levine, A., Tenhaken, R., Dixon, R., Lamb, C. (1994): H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79, 583–593.
Malamy, J., Carr, J.P., Klessig, D.F., Raskin, I., 1990. Salicylic ac-id—a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250, 1002–1004.
Malamy, J., Leon, J. P., Klessig, D. F., Raskin, I. (1990) : Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250, 1002–1004.
Malamy, J.; Klessig, D. F. 1992. Salicylic-Acid and Plant-Disease Resistance. Plant Journal, 2, (5), 643-654.
Martínez-Medina, A., Pascual, J., Pérez-Alfocea, F., Albacete, A., and Roldán, A.2010.Trichodermaharzianum and Glomusintraradices modify the hormone disruption induced by Fusariumoxysporum infection in melon plants. Phytopathology, 100 (7):682-688.
Meena, B., Marimuthu, T., Velazhahan, R. (2001): Salicylic acid induced resistance in Groundnut against late leaf spot caused by Cercos-poridiumpersonatum. J. Mycol. Pl. Pathol. 31, 139–145. Microb. Inter. 11, 23–32.
Notz, R. E. 2002. Biotic factors affecting 2,4-diacetylphloroglucnol biosynthesis in the model biocontrol strain Pseudomonas fluorescensCHA0. Ph. D. Thesis, swiss federal institute of technology, zürich.107pp.
Pieterse, C.M.J., van Wees, S.C.M., Hoffland, E., van Pelt, J.A., van Loon, L.C., 1996. Systemic resistance in Arabidopsis induced by biocon-trol bacteria is independent of salicylic acid accumulation and pathogene-sis-related gene expression. Plant Cell 8, 1225–1237.
Pieterse, C.M.J., van Wees, S.C.M., Hoffland, E., van Pelt, J.A., van Loon, L.C., 1996. Systemic resistance in Arabidopsis induced by biocon-trol bacteria is independent of salicylic acid accumulation and pathogene-sis-related gene expression. Plant Cell 8, 1225–1237.
Ramamoorthy, V., Raguchander, T., and Samiyappan, R. 2002. En-hancing resistance of tomato and hot pepper to Pythium diseases by seed treatment with fluorescent pseudomonads. Eur. J. Plant Pathol., 108: 429441-.
Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina,A., Steiner, H. Y., Hunt, M. D. (1996): Systemic acquired resistance. Plant Cell 8, 1809–1819.
Ryals, J.A., Neuenschwanderm, U.H., Willits, M.G., Molina, A., Steiner, H.-Y., Hunt, M.D., 1996. Systemic acquired resistance. Plant Cell 8, 1809–1819.
Saikia, R., Singh, T., Kumar, R., Srivastava, J., Srivastava, A., Singh, K., and Arora, D. 2003. Role of salicylic acid in systemic resis-tance induced by Pseudomonas fluorescensagainst Fusariumoxyspo-rumf.sp. ciceriin chickpea. Microbiol. Res., 158:203–213. Seah, S., Sivasithamparam, K., Turner, D.W., 1996. The effect of salicyl-ic acid and resistance in wheat (Triticumaestivum) seedling roots against the take-all fungus, Gaeumannomycesgraminis var. tritici. Aust. J. Bot. 44, 499–507
Tameling, W. I. L., andTakken, F. L. W. 2008. Resistance proteins: scouts of the plant innate immune system. Eur. J. Plant Pathol., 121: 243–255.
Tripathi, S., Kamal, S., Sheramati, I., Oelmuller, R., and Varma, A 2008. Mycorrhizal fungi and other root endophytes as biocontrol agentsagainst root pathogens. Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Block- A, Sec-125, Express Highway, Noida201- 303, ar Pradesh, India.
Truman, W. M., Bennett, M. H., Colin, G. N. and Murray, R. G. 2010. Utt Arabidopsis auxin mutants are compromised in systemic acquired resistance and exhibit aberrant accumulation of various indolic com-pounds. Plant Physiology Preview, 10:1104.
Van den Burg, H. A., and Takken, F. L. W. 2009. Does chromatin remodeling mark systemic acquired resistance? Trends in Plant Science, 14(5): 286-294.
Van Loon, L. C., Antoniw, J. F. (1982): Comparison of the effects of salicylic acid and ethephon with virus-induced hypersensitivity and ac-quired resistance in tobacco Nicotianatabacum, tobacco mosaic virus. Neth. J. Plant Pathol. 88,237–256.
Vindal, S., Eriksson, A. R. B., Montesano, M., Denecke, J., Palva, E. T. (1998): Cell wall degrading enzymes from Erwiniacarotovora coope-rate in the salicylic acid-independent induction of a plant defense re-sponse. Mol. Plant
Ward, E., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, Yang, J. W., Yu, S. H., and Ryu, C. 2009. Priming of defense-related genes confers root-colonizing bacilli-elicited induced systemic resistance in pepper. Plant Pathol. J., 25(4): 389-399.
Zhang, Y. 2006. Studies of pathogenesis-related proteins in the strawberry plant: Partial purification of a chitinase-containing protein complex and analysis of an osmotin-like protein gene .Ph.D. Thesis, B.S. Nankai University.113pp.
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Journal of Basic Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.