التوصيف الجيوكيميائي لوديان (الهش، الشيخ والراهب)، بالمنطقة الواقعة بين طبرق-والبردي، شمال شرق ليبيا

المؤلفون

  • سعد خميس العبيدي قسم علوم الأرض، كلية العلوم، جامعة بنغازي، بنغازي، ليبيا.
  • أسامة الشلطامي قسم علوم الأرض، كلية العلوم، جامعة بنغازي، بنغازي، ليبيا.
  • أنس المحمودي قسم الاستكشاف، المختبر الجيولوجي، شركة الخليج العربي للنفط، بنغازي، ليبيا.
  • فارس فتحي فارس قسم علوم الأرض، كلية العلوم، جامعة بنغازي، بنغازي، ليبيا.

DOI:

https://doi.org/10.59743/jmset.v3i1.97

الكلمات المفتاحية:

وادي الهش، وادي الشیخ، وادي الراهب، طبرق، بردي، شمال شرق ليبيا

الملخص

ركز هذا العمل في المقام الأول على التحليل الكيميائي (للأكاسيد بالنسبة المئوية للوزن ٪) من منطقة طبرق وحتى البردي في الجزء الشمالي الشرقي من ليبيا، تتراوح التشكيلات الجيولوجية في العمر من أواخر العصر الطباشيري إلى الميوسين المتأخر في الوادي؛ الهش، الشيخ، الراهب. وأظهرت بيانات التحليل الكيميائي أن تكوين الفايدية غنى في ثاني أكسيد الكبريت و TiO2 و A12O3 و Fe2O3 و MgO و Na2O و K2O و كل من التشكيلات الأخرى المدروسة. في تكوينات الفايدية والجغبوب، تبلغ نسبة Na/Cl حوالي 1، ويرتبط Na2O بقوة مع Cl (r = 0.98) التي يشير وجودها على شكل أملاح (هاليت). وتوجد علاقة طردية ما بين Na2O و  SO3 ((r = 0.71 وبين Cl و MgO و K2O (r = 0.98 و0.77  على التوالي) وتدل على وجود تبخر مرة أخرى. ومع ذلك، من وجهة الناحية الاقتصادية التشكيلات تختلف في المواصفات الفيزيائية والمعدنية والكيميائية من درجة عالية من النقاء إلى صخور الحجر الجيري الملوثة. بالإضافة إلى الحجر الجيري تحتوي هذه الصخور على كربونات أخرى مثل الدولوميت، وغير كربونات وتشمل الكوارتز والطين، الهاليت، الهيماتيت والمعادن الجلوكونيت. ويمكن إستغلال هذه الصخور في الصناعات التالية: صناعة الإسمنت، الأعلاف الحيوانية، الزراعة، البناء وأهمها الطرق الديكورات والبلاط، الوزن في الحفر لطينة سوائل الحفر، والبلاستيك، والزجاج. وبصفة عامة، تحتوي الرواسب المدروسة على تركيزات منخفضة من أكاسيد المعادن الثقيلة.

المراجع

Abu El-Ella N. (2006). Sedimentological, mineralogical and geomorphological studies on the Quaternary sediments of coastal area, W. Tripoli, Libya. Ph.D. Thesis, Cairo Univ. Cairo, Egypt.

Al Shariani T.A.K. (2006). Composition and environmental geochemistry of sediments encroachment controlled by dams in the United Arab Emirates. Ph.D. Thesis, Cairo Univ., Cairo, Egypt.

Basu A., and Molinaroli E. (1989). Provenance characteristics of detrital opaque Fe-Ti oxide minerals. Journal of Sedimentary Research, 59: 922-934.

Carranza-Edwards A., Centeno-García L., Rosales-Hoz L., and Lozano-Santa Cruz R. (2001). Provenance of beach gray sands from western México. Journal of South American Earth Sciences, 14: 291-301

Carranza-Edwards A., Kasper-Zubillaga J.J., Rosales-Hoz L., Morales-de la Garza E.A., and Lozano-Santa Cruz R. (2009). Beach sand composition and provenance in a sector of the southwestern Mexican Pacific. Revista Mexicana de Ciencias Geológicas, 26(2): 433-447.

Condie K.C., Boryta M.D., Liu J., and Quian X. (1992). The origin of khondalites: geochemical evidence from the Archean to Early Proterozoic granulitic belt in the North China Craton. Precambrian Research, 59(3-4): 207-223.

Cox R., Low D.R., and Cullers R.L. (1995). The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta, 59: 2919–2940.

El Amawy M.A., Muftah A.M., Abdel Wahed M., and Nassar A. (2010). Wrench structural deformation in Ras Al Hilal-Al Athrun area, NE Libya: A new contribution in Northern Al Jabal Al Akhdar belt. Arab. J. of Geosci., 4: 1067-1085.

El-Arnauti A., and Shelmani M. (1985). A contribution to the northeast Libyan subsurface stratigraphy with emphasis on Pre-Mesozoic. In : Subsurface playnostratigraphy of Northeast Libya (eds A. El-Arnauti, B. Owens, and B. Thusu). Benghazi, Garyounis University Publications, 1-16.

El Ebaidi K.S. (2015). The uses of the Al Faidiyah Formation Oligocene - Miocene in the drilling mud Fluids (Bentonite) at Umm Ar Razam, NE Libya. Journal of Marine Science & Environmental Technologies (JMSET); 1(2): 51-67.

El-Hawat A.S, and Abdulsamad E.O. (2004). The Geology of Cyrenaica: a field seminar. Special publication, Earth Sciences Society of Libya, Tripoli, Libya, p. 130.

El-Hawat, A.S. and Shelmani, M., 1993. Short notes and Guidebook on the geology of Al Jabal Al Akhdar, Cyernaica, NE Libya. 1st Symposium on the Sedimentary basins of Libya, Geology of Sirt basin. Earth Science Society of Libya (ESSL), 70.

El Werfalli A., Muftah A., El Hawat A., Shelmani M. (2000). A guidebook on the geology of Al Jabal al Akhdar, Cyrenaica, NE Libya. Sedimentary Basins of Libya, 2nd Symposium Geology of Northwest Libya, 71.

Hallett D. (2002). Petroleum Geology of Libya. Elsevier Science, Amsterdam and Boston, p. 508.

Harries P.T. (1979). Limestone and dolomite Mineral Resources Consultative Committee. Minerals Strategy and Economics Research. Institute of Geology Science. Mineral Dossier. 23 – 111.

Imam M.M. (1999). Lithostratigraphy and planktonic foraminiferal biostratigraphy of the Late Eocene-Middle Eocene sequence in the area between Wadi Al Zeitun and Wadi Al Rahib, Al Bardia area, northeast Libya. Journal of African Earthy Sciences, 28(2): 619-639.

Katongo C., Koeberl C., Witzke B.J., Hammond R.H., and Anderson R.R. (2004). Geochemistry and shock petrography of the Crow Creek Member, South Dakota, USA: Ejecta from the 74-Ma Manson impact structure. Meteoritics & Planetary Science, 39(1): 31–51.

McLennan S.M., Hemming S., McDaniel D.K., and Hanson G.N. (1993). Geochemical approaches to sedimentation, provenance, and tectonics, in Johnson, M.J., Basu, A. (eds.), Processes Controlling the Composition of Clastic Sediments. Geological Society of America, Special Paper, 284: 21-40.

Nagarajan R., Madhavaraju J., Nagendra R., Armstrong-Altrin J.S., and Moutte J. (2007). Geochemistry of Neoproterozoic shales of the Rabanpalli Formation, Bhima Basin, Northern Karnataka, southern India: implications for provenance and paleoredox conditions. Revista Mexicana de Ciencias Geológicas, 24(2): 150-160.

Nesbitt H.W., Markovics G., and Price R.C. (1980). Chemical processes affecting alkalis and alkali earths during continental weathering. Geochim. Cosmochim. Acta, 44: 1659–1666.

Preda M., and Cox M.E. (2005). Chemical and mineralogical composition of marine sedi-ments, and relation to their source and transport, Gulf of Carpentaria, Northern Australia. Journal of Marine Systems, 53: 169-186.

Reitz A., and de Lange G.J. (2005). Abundant Sr-rich aragonite in eastern Mediterranean sapropel S1: Diagenetic vs. detrital/biogenic origin. Paleogeography, Paleoclimatology, Paleoecology, 235(1-3): 135-148.

Shaltami O.R. (2012). Mineral composition and environmental geochemistry of the beach sediments along the Mediterranean Coast from Benghazi to Bin Jawwad, Northeast Libya. Ph.D. Thesis, Cairo Univ. Cairo, Egypt.

Thomson J., Crudeli D., De Lange, G.J., Slomp C.P., Erba E., and Corselli C. (2004). Florisphaera profunda and the origin and diagenesis of carbonate phases in eastern Mediterranean sapropel units. Paleoceanography 9, PA3003, doi: 10.1029/2003PA000976.

Veizer J. (1983). Trace elements and isotopes in sedimentary carbonates, in Reeder, R.J. (ed.), Carbonates: Mineralogy and Chemistry, Mineralogical Society of America. Reviews of Mineralogy, 11: 265-299.

White W.M. (2001). Geochemistry, Chapter 7: Trace Elements., Whiley-Blackwell Co., USA.

Wronkiewicz D.J., and Condie K.C. (1987). Geochemistry of Archean Shales from the Witwatersrand Supergroup, South Africa: Source-Area Weathering and Provenance. Geochimimica et Cosmochimica Acta, 51: 2401-2416.

Zhang J. (2004). Major and rare earth elements in rainwaters from Japan and East China Sea: Natural and anthropogenic sources. Chemical Geology, 209(3-4): 315-326.

التنزيلات

منشور

2017-06-30

كيفية الاقتباس

العبيدي س. خ., الشلطامي أ., المحمودي أ., & فارس ف. ف. (2017). التوصيف الجيوكيميائي لوديان (الهش، الشيخ والراهب)، بالمنطقة الواقعة بين طبرق-والبردي، شمال شرق ليبيا. مجلة علوم البحار والتقنيات البيئية, 3(1), E 1–17. https://doi.org/10.59743/jmset.v3i1.97

إصدار

القسم

المقالات