Assessment of The Vegetation Role in Soil Resistance to Water Erosion at Al-Jabal Alkhdar Region, Libya
DOI:
https://doi.org/10.59743/jmset.v6i1.52Keywords:
Plant vegetation, Al-Jabal Alkhdar region, Soil conservationAbstract
This study investigated the change in land cover patterns and their impact on erosion-related soil degradation on the sloping lands of the south of Al-Jabal Alkhdar in Libya. A scientifically recognized method proposed by Wischmeier and Smith was applied to estimate the extent of erodibility, summarized in a nomogram (multi-curved graph), and represented in five erodibility-related soil properties. In this study, the percentage of plant cover and plant health status were assessed and compared against the soil erodibility index (K). The maps of plant cover and slope classification were also used to prepare a map of soil erosion risk assessment. The study found that plant vitality has a very significant correlation coefficient with soil erodibility, reaching about 0.83, the percentage of plant coverage and the percentage of soil organic matter have a good correlation with soil erodibility by about 0.69, while the final infiltration rate achieved a correlation rate of 0.68. Soil erodibility was also correlated with the soil texture indicators (percentage of sand >0.1 mm, and silt and very fine sand). Accordingly, the vegetation cover has an important role in the soil resistance to erosion and rainfall erosivity under the semi-arid conditions of the study area. Despite the continuous deterioration and decrease of the vegetation cover, it remains a key to understanding the deterioration of soil characteristics. Therefore, maintaining plant cover will be always the best management strategy for soil conservation from erosion. Nevertheless, there is an increasing need for the expansion of research and studies on degraded semi-arid slopes, so that, the interaction between climate, soil, slope, and vegetation factors and their influence on soil susceptibility to erosion can be well understood.
References
قائمة المراجع باللغة العربية:
بن محمود، خالد رمضان (1995). الترب الليبية، المجلس القومي للبحث العلمي، طرابلس، ليبيا.
أبوراس، مراد ميلاد؛ وعبدالرحمن، يوسف فرج (2016). عمق التربة وعلاقته ببعض خصائصها بمنطقة الوسيطة، الجبل الأخضر، ليبيا. مجلة المختار للعلوم، 31(1): 144-160.
أبوراس، مراد ميلاد (1997). تأثير إزالة غطاء الغابات للاستخدام الزراعي على فقد التربة وبعض خصائصها بمنطقتي شحات والحمامة. رسالة ماجستير، جامعة عمر المختار، البيضاء، ليبيا.
جامعة عمر المختار (2005). دراسة وتقييم الغطاء النباتي الطبيعي بمنطقة الجبل الأخضر. التقرير النهائي لمؤسسة القذافي العالمية للجمعيات الخيرية، ليبيا.
عبدالرحمن، يوسف فرج؛ جاب الله، عوض محمد (2016). تغير الغطاء الأرضي وعلاقته بتدهور الأراضي. المؤتمر العلمي الرابع للبيئة والتنمية المستدامة بالمناطق الجافة وشبه الجافة، 20-22 أكتوبر، جامعة اجدابيا، ليبيا.
قائمة المراجع باللغة الإنجليزية:
Aburas M.M. (2009). Assessment of Soil Erodibility in Relation to Soil Degradation and land Use in mediterranean Libya. PhD thesis University of Newcastle Upon Tyne,UK.
Ali G.M. (1995). Water Erosion on the Northern Slope of Al-Jabal Al-Akhdar of Libya. PhD thesis, University of Durham,UK.
Andersen E., Elbersen B., Godeschalk F., and Verhoog D. (2007). Farm management indicators and farm typologies as a basis for assessments in a changing policy environment. Journal of Environmental Management, 82(3): 353-362.
Basso B., De Simone L., Cammarano D., Martin E.C., Margiotta S., Grace P.R., Yeh M.L., and Chou T.Y. (2012). Evaluating responses to land degradation mitigation measures in Southern Italy. International Journal of Environmental Research, 6(2): 367-380.
Caraveli H. (2000). A comparative analysis on intensification and extensification in mediterranean agriculture: Dilemmas for LFAs policy. Journal of Rural Studies, 16(2): 231-242.
Cerda A. (1998). Changes in overland flow and infiltration after a rangeland fire in a Mediterranean scrubland. Hydrological Processes, 12: 1031–1042.
Clarke M.L., and Rendell H.M. (2000). The impact of the farming practice of remodelling hillslope topography on badland morphology and soil erosion processes. Catena, 40(2): 229-250.
Congalton R.G., Oderwald R.G., and Mead R.A. (1983). Assessing landsat classification accuracy using discrete multivariate-analysis statistical techniques. Photogrammetric Engineering and Remote Sensing, 49(12): 1671-1678.
Ediriwic-krema J., and Khorram K.S. (1997). Hierarchical maximum-likelihood classification for improved accuracies. IEEE Transactions on Geoscience and Remote Sensing, 35(4): 810-816.
Garcia-Ruiz J.M., Lasanta T., Ruiz-Flano P., Ortigosa L., White S., Gonzalez C., and Marti C. (1996). Land-use changes and sustainable development in mountain areas: A case study in the Spanish Pyrenees. Landscape Ecology, 11(5): 267-277.
Guler M., Yomralioglu T., and Reis S. (2007). Using landsat data to determine land use/land cover changes in Samsun, Turkey. Environmental Monitoring and Assessment, 127(1-3): 155-167.
Kefi M., Yoshino K., Setiawan Y., Zayani K., and Boufaroua M. (2011). Assessment of the effects of vegetation on soil erosion risk by water: A case study of the Batta watershed in Tunisia. Environmental Earth Sciences, 64(3): 707-719.
Kinnell P.I.A. (2007). Runoff dependent erosivity and slope length factors suitable for modelling annual erosion using the Universal Soil Loss Equation. Hydrological Processes, 21(20): 2681-2689.
Kirkby M.J., and Cox N.J. (1995). A climatic index for soil-erosion potential (CSEP) including seasonal and vegetation factors. Catena, 25(1-4): 333-352.
Koruyan K., Deliormanli A.H., Karaca Z., Momayez M., Lu H., and Yalcin E. (2012). Remote sensing in management of mining land and proximate habitat. Journal of the Southern African Institute of Mining and Metallurgy, 112(7): 667-672.
Kosmas C. (2011). Indicators and thematic strategy for soil protection’. International Congress of European Society for Soil Conservation. Thessaloniki: Ministry of Rural Development and Food.
Kosmas C., Ferrara A., Briassouli H., and Imeson A. (1999). The Medalus project: Mediterranean desertification and land use. Brussels, Belgium: European Commission, Directorate-General for Science, Research and Development.
Le Bissonnais Y., Blavet D., De Noni G., Laurent J.Y., Asseline J., and Chenu C. (2007). Erodibility of Mediterranean vineyard soils: relevant aggregate stability methods and significant soil variables. European Journal of Soil Science, 58(1): 188-195.
Morgan R.P.C. (1996). Soil erosion and conservation. Addison Wesley Longman Limited, UK.
Onat J.J., and Peco B. (2005). Policy impact on desertification: Stakeholders perceptions in southeast Spain. Land Use Policy, 22(2): 103-114.
Rasul G., Thapa G.B., and Zoebisch M.A. (2004). Determinants of land-use changes in the Chittagong Hill Tracts of Bangladesh. Applied Geography, 24(3): 217-240.
Roxo M., Simao A., Stamou G., Tomasi N., Usai D., and Vacca A. (1997). The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena, 29: 45-59.
Selkhoze Prom E. (1980). Soil studies in the eastern zone of Libya. Secretariat of Agriculture, Libya.
Stocking M.A., and Murnaghan N. (2001). Handbook for the field assessment of land degradation. Earthscan Publications Ltd., UK.
Troeh F.R., Hobbs J. and Donahue R. (1980). Soil and Water Conservation for productivity and environmental protection. Prentice-Hall, Inc., Englewood Cliffs, N.J., USA.
Wischmeier W.H., and Smith D.D. (1978). Predicting rainfall erosion losses. In: A guide to conservation Planning. Agricultural Research Service Handbook. Washington, DC: USA.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Journal of Marine Sciences and Environmental Technologies
This work is licensed under a Creative Commons Attribution 4.0 International License.