Analysis of Ship Stability Using Longitudinal and Transverse Equilibrium Equations: A Practical Application on the Libyan Vessel ''ANWAAR AFRQYA''
DOI:
https://doi.org/10.59743/jmset.v10i2.184Keywords:
Buoyancy, Lateral stability, Oil tankers, Ship structure, StabilityAbstract
Load distribution within ships, particularly oil tankers, is a fundamental factor that directly impacts their stability and navigational safety, especially in light of the ongoing changes in shipping patterns and modern marine designs. Despite the existence of general regulatory standards, maritime accidents still indicate gaps in understanding the precise relationship between longitudinal and transverse mass distribution and its impact on the dynamic and static stability of ships. Based on this problem, this study aimed to: analyze the stability of marine vessels by applying mathematical modeling of longitudinal and transverse equilibrium equations, using the Libyan oil tanker ANWAAR AFRQYA as a real-world case study. The metacentric height (GM) and the righting arm (GZ) are key indicators used to assess a ship's ability to resist heeling and capsizing under various maritime forces. Based on the vessel's actual specifications, the submerged volume and transverse moment of inertia were estimated to calculate the metacentric radius and GM under different loading conditions. The results showed that a ship is unstable when the center of gravity is significantly higher than the center of buoyancy. The center of gravity is higher than the metacenter (M) , and the GM value becomes negative, indicating a tendency to capsize, Which increases the possibility of a rollover, especially at angles of inclination exceeding 15°. When the center of gravity was lowered to more appropriate levels, the stability improved significantly, with GZ values remaining within safe limits. This study highlights the importance of load distribution and dynamic ballast systems.
Downloads
References
• الجبالي، م. ع. (2019 .(الاستقرار البحري وتصميم السفن. الإسكندرية: الأكاديمية العربية للعلوم والتكنولوجيا والنقل البحري.
• الحسن، س. ع. (2020). دليل المهندس البحري: المفاهيم الأساسية في استقرار السفن. القاهرة: الهيئة المصرية العامة للنقل البحري.
• الشيباني، ع. (2015). مدخل إلى علم بناء السفن وتحليل مراكز القوى. طرابلس: منشورات جامعة قاريونس.
• الفرجاني، إ. (2016.( الهندسة البحرية والاستقرار الطولي والعرضي للسفن. طرابلس: دار الرواد للنشر البحري.
• الناظوري، ح. م. (1990). اتزان السفن للربابنة وضباط الملاحة. الإسكندرية: منشأة المعارف.
• أبو عيسى، أ. (2014). أسس توازن السفن في المياه العميقة. بيروت: مركز دراسات النقل البحري.
• Sakuma, S., & Naruse, T. (2015). On the optimization among the ships’ breadth, draft and the height of center of gravity. Journal of the Japan Society of Naval Architects and Ocean Engineers, 22(0), 229–233. https://doi.org/10.2534/jjasnaoe.22.229.
• Abankwa, N. O., Bowker, J., Ossont, S. J., Scott, M., & Cox, S. J. (2018). Estimating the longitudinal center of flotation of a vessel in waves using acceleration measurements. IEEE Sensors Journal, 18(20), 8334–8340. https://doi.org/10.1109/JSEN.2018.2865463
• Rosén, A., Ruponen, P., Shigunov, V., Schreuder, M., & Terada, D. (2019). An overview of the current research on stability of ships and ocean vehicles. Ocean Engineering, 186, 106134. https://doi.org/10.1016/j.oceaneng.2019.106134
• Pérez‑Canosa, J. M., Orosa, J. A., Galdo, M. I. L., & Barros, J. J. C. (2022). A new theoretical dynamic analysis of ship rolling motion considering navigational parameters, loading conditions and sea state conditions. Journal of Marine Science and Engineering, 10(11), 1646. https://doi.org/10.3390/jmse10111646
• Yuliana, N., Hidayat, R., & Syamsuri, S. (2024). Static and dynamic stability analysis of liftnet fishing vessel. International Journal of Marine Engineering Innovation and Research, 8(1), 1–9. https://www.researchgate.net/publication/391873799
• Splash Maritime Training. (2023). Ship stability and ballast systems. Retrieved from https://www.splashmaritime.com.au/Marops/data/less/Shipk/Stab/Longitudinal.htm .
• Biran, A. (2003). Ship hydrostatics and stability. Butterworth-Heinemann.
• Lewis, E. V. (Ed.). (1989). Principles of naval architecture. Society of Naval Architects and Marine Engineers.
• Muckle, W. (2017). Naval architecture for marine engineers. Institute of Marine Engineering, Science and Technology.
• Papanikolaou, A. (2014). Ship design: Methodologies of preliminary design. Springer.
• Rawson, K. J., & Tupper, E. C. (2001). Basic ship theory (5th ed.). Butterworth-Heinemann.
Additional Files
Published
Issue
Section
License
Copyright (c) 2025 حمزة مفتاح رجب, بالقاسم محمد الأعوج, عبدالسلام رمضان دلف

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.