AN UPDATE REVIEW ON IMMUNOSUPPRESSIVE CELLS; MYELOID DERIVED SUPPRESSOR CELLS (MDSCS) IN CANCERS

Authors

  • Balid Albarbar Department of Medical Laboratory - Higher Institute of Sciences & Medical Technology – Alkums - Libya

DOI:

https://doi.org/10.59743/aujas.v5i1.1641

Keywords:

Myeloid derived suppressor cells (MDSCs), macrophages, dendritic cells, natural killer cells, cancer, immunotherapy, vaccines

Abstract

Myeloid derived suppressor cells (MDSCs) are heterogeneous subsets of  immune cells and they function to inhibit host T cells activation leading  to  tumour  growth.  Currently,  the  majority  of  studies  support  key  contributions  of  MDSCs  to  tumour  progression  via  direct  mechanisms  immune   mediated   and   indirect   mechanism   which   is     not   directly  associated with immune suppression. Due to the complexity of MDSCs  heterogeneity, the aspect of MDSCs phenotype, morphology and function  is  poorly  investigated  up  to  date.  And  for  this  reason,  this  review  will  provide  a  comprehensive  understanding  of  the  role  and  function  of  MDSCs  in  cancer  patients.  Targeting  the  immunosuppressive  cells  MDSCs may improve the efficacy of immunotherapy in cancer patients in  future. 

References

Aly, H. A. (2012). Cancer therapy and vaccination. Journal of immunological methods, 382(1), 1-23. DOI: https://doi.org/10.1016/j.jim.2012.05.014

Bogdan, C. (2010). Regulation of lymphocytes by nitric oxide Suppression and DOI: https://doi.org/10.1007/978-1-60761-869-0_24

Regulation of Immune Responses (pp. 375-393): Springer.

Bronte, V., & Zanovello, P. (2005). Regulation of immune responses by L- DOI: https://doi.org/10.1126/stke.2992005tw312

arginine metabolism. Nature Reviews Immunology, 5(8), 641-654.

Bunt, S. K., Sinha, P., Clements, V. K., Leips, J., & Ostrand-Rosenberg, S.

(2006). Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. The Journal of Immunology, 176(1), 284- 290. DOI: https://doi.org/10.4049/jimmunol.176.1.284

Capietto, A.-H., Kim, S., Sanford, D. E., Linehan, D. C., Hikida, M., Kumosaki, T., . . . Faccio, R. (2013). Down-regulation of PLCγ2–β-catenin pathway promotes activation and expansion of myeloid-derived suppressor cells in cancer. The Journal of experimental medicine, 210(11), 2257-2271. DOI: https://doi.org/10.1084/jem.20130281

Cheng, P., Corzo, C. A., Luetteke, N., Yu, B., Nagaraj, S., Bui, M. M., . . . Vogl, T. (2008). Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. The Journal of experimental medicine, 205(10), 2235-2249. DOI: https://doi.org/10.1084/jem.20080132

Chikamatsu, K., Sakakura, K., Toyoda, M., Takahashi, K., Yamamoto, T., & Masuyama, K. (2012). Immunosuppressive activity of CD 14+ HLA‐ DR− cells in squamous cell carcinoma of the head and neck. Cancer science, 103(6), 976-983. DOI: https://doi.org/10.1111/j.1349-7006.2012.02248.x

Condamine, T., & Gabrilovich, D. I. (2011). Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends in immunology, 32(1), 19-25. DOI: https://doi.org/10.1016/j.it.2010.10.002

Condamine, T., Mastio, J., & Gabrilovich, D. I. (2015). Transcriptional regulation of myeloid-derived suppressor cells. Journal of leukocyte biology, 98(6), 913-922. DOI: https://doi.org/10.1189/jlb.4RI0515-204R

Couzin-Frankel, J. (2013). Cancer immunotherapy. Science, 342(6165), 1432- DOI: https://doi.org/10.1126/science.342.6165.1432

Cripps, J. G., & Gorham, J. D. (2011). MDSC in autoimmunity. International DOI: https://doi.org/10.1016/j.intimp.2011.01.026

immunopharmacology, 11(7), 789-793.

Cuenca, A., Cheng, F., Wang, H., Brayer, J., Horna, P., Gu, L., . . . Sotomayor,

E. M. (2003). Extra-Lymphatic Solid Tumor Growth Is Not

Immunologically Ignored and Results in Early Induction of Antigen- Specific T-Cell Anergy Dominant Role of Cross-Tolerance to Tumor Antigens. Cancer Research, 63(24), 9007-9015.

Damuzzo, V., Pinton, L., Desantis, G., Solito, S., Marigo, I., Bronte, V., & Mandruzzato, S. (2015). Complexity and challenges in defining myeloid‐derived suppressor cells. Cytometry Part B: Clinical Cytometry, 88(2), 77-91. DOI: https://doi.org/10.1002/cyto.b.21206

de Lima, V. A. B., Borch, A., Hansen, M., Draghi, A., Spanggaard, I., Rohrberg, K., . . . Svane, I. M. (2020). Common phenotypic dynamics of tumor- infiltrating lymphocytes across different histologies upon checkpoint inhibition: impact on clinical outcome. Cytotherapy.

Dufait, I., Van Valckenborgh, E., Menu, E., Escors, D., De Ridder, M., & Breckpot, K. (2016). Signal transducer and activator of transcription 3 in myeloid-derived suppressor cells: an opportunity for cancer therapy. Oncotarget, 7(27), 42698. DOI: https://doi.org/10.18632/oncotarget.8311

Dysthe, M., & Parihar, R. (2020). Myeloid-Derived Suppressor Cells in the Tumor Microenvironment Tumor Microenvironment (pp. 117-140): Springer. DOI: https://doi.org/10.1007/978-3-030-35723-8_8

Elliott, L. A., Doherty, G. A., Sheahan, K., & Ryan, E. J. (2017). Human tumor- infiltrating myeloid cells: phenotypic and functional diversity. Frontiers in immunology, 8, 86. DOI: https://doi.org/10.3389/fimmu.2017.00086

Fridlender, Z. G., Sun, J., Mishalian, I., Singhal, S., Cheng, G., Kapoor, V., . . . Worthen, G. S. (2012). Transcriptomic analysis comparing tumor- associated neutrophils with granulocytic myeloid-derived suppressor cells and normal neutrophils. PloS one, 7(2), e31524. DOI: https://doi.org/10.1371/journal.pone.0031524

Fujita, M., Kohanbash, G., Fellows-Mayle, W., Hamilton, R. L., Komohara, Y., Decker, S. A., . . . Okada, H. (2011). COX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cells. Cancer Research, 71(7), 2664-2674. DOI: https://doi.org/10.1158/0008-5472.CAN-10-3055

Gabrilovich, D. I. (2017). Myeloid-derived suppressor cells. Cancer immunology DOI: https://doi.org/10.1158/2326-6066.CIR-16-0297

research, 5(1), 3-8.

Gabrilovich, D. I., Ciernik, I. F., & Carbone, D. P. (1996). Dendritic cells in

antitumor immune responses: I. Defective antigen presentation in tumor- bearing hosts. Cellular immunology, 170(1), 101-110.

Gabrilovich, D. I., & Nagaraj, S. (2009). Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology, 9(3), 162-174. DOI: https://doi.org/10.1038/nri2506

An update review on immunosuppressive cells; Myeloid derived suppressor cells (MDSCs) in cancers

Gabrilovich, D. I., Ostrand-Rosenberg, S., & Bronte, V. (2012). Coordinated regulation of myeloid cells by tumours. Nature Reviews Immunology, 12(4), 253-268. DOI: https://doi.org/10.1038/nri3175

Greten, T. F., Manns, M. P., & Korangy, F. (2011). Myeloid derived suppressor cells in human diseases. International immunopharmacology, 11(7), 802-807. DOI: https://doi.org/10.1016/j.intimp.2011.01.003

Habal, N., Gupta, R. K., Bilchik, A. J., Yee, R., Leopoldo, Z., Ye, W., . . . Morton, D. L. (2001). CancerVax, an allogeneic tumor cell vaccine, induces specific humoral and cellular immune responses in advanced colon cancer. Annals of surgical oncology, 8(5), 389-401. DOI: https://doi.org/10.1007/s10434-001-0389-6

Horikawa, N., Abiko, K., Matsumura, N., Hamanishi, J., Baba, T., Yamaguchi, K., . . . Konishi, I. (2017). Expression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cells. Clinical Cancer Research, 23(2), 587-599. DOI: https://doi.org/10.1158/1078-0432.CCR-16-0387

Huang, B., Pan, P.-Y., Li, Q., Sato, A. I., Levy, D. E., Bromberg, J., . . . Chen, S.-H. (2006). Gr-1+ CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Research, 66(2), 1123-1131. DOI: https://doi.org/10.1158/0008-5472.CAN-05-1299

Hurley, K. E., & Chapman, P. B. (2005). Helping melanoma patients decide whether to choose adjuvant high-dose interferon-α2b. The oncologist, 10(9), 739-742. DOI: https://doi.org/10.1634/theoncologist.10-9-739

Jayaraman, P., Parikh, F., Lopez-Rivera, E., Hailemichael, Y., Clark, A., Ma, G., . . . Overwijk, W. W. (2012). Tumor-expressed iNOS controls induction of functional myeloid derived suppressor cells (MDSC) through modulation of VEGF release. Journal of Immunology (Baltimore, Md.: 1950), 188(11), 5365. DOI: https://doi.org/10.4049/jimmunol.1103553

Khaled, Y. S., Ammori, B. J., & Elkord, E. (2013). Myeloid-derived suppressor cells in cancer: recent progress and prospects. Immunology and cell biology, 91(8), 493-502. DOI: https://doi.org/10.1038/icb.2013.29

Ko, J. S., Zea, A. H., Rini, B. I., Ireland, J. L., Elson, P., Cohen, P., . . . Garcia, J. (2009). Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clinical Cancer Research, 15(6), 2148-2157. DOI: https://doi.org/10.1158/1078-0432.CCR-08-1332

Kumar, V., Cheng, P., Condamine, T., Mony, S., Languino, L. R., McCaffrey, J. C., . . . Penman, E. (2016). CD45 phosphatase inhibits STAT3

transcription factor activity in myeloid cells and promotes tumor- associated macrophage differentiation. Immunity, 44(2), 303-315. DOI: https://doi.org/10.1016/j.immuni.2016.01.014

Kumar, V., Patel, S., Tcyganov, E., & Gabrilovich, D. I. (2016). The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends in immunology, 37(3), 208-220. DOI: https://doi.org/10.1016/j.it.2016.01.004

Lechner, M. G., Megiel, C., Russell, S. M., Bingham, B., Arger, N., Woo, T., & Epstein, A. L. (2011). Functional characterization of human Cd33 And Cd11b myeloid-derived suppressor cell subsets induced from peripheral blood mononuclear cells co-cultured with a diverse set of human tumor cell lines. J. Transl. Med, 9, 90. DOI: https://doi.org/10.1186/1479-5876-9-90

Lee, C.-R., Kwak, Y., Yang, T., Han, J. H., Park, S.-H., Michael, B. Y., . . . Kim, Y.-C. (2016). Myeloid-derived suppressor cells are controlled by regulatory T cells via TGF-β during murine colitis. Cell reports, 17(12), 3219-3232. DOI: https://doi.org/10.1016/j.celrep.2016.11.062

Letterio, J. J., & Roberts, A. B. (1998). Regulation of immune responses by DOI: https://doi.org/10.1146/annurev.immunol.16.1.137

TGF-β. Annual review of immunology, 16(1), 137-161.

Lu, T., Ramakrishnan, R., Altiok, S., Youn, J.-I., Cheng, P., Celis, E., . . .

Gabrilovich, D. (2011). Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. The Journal of clinical investigation, 121(10), 4015-4029. DOI: https://doi.org/10.1172/JCI45862

Mao, Y., Sarhan, D., Steven, A., Seliger, B., Kiessling, R., & Lundqvist, A. (2014). Inhibition of tumor-derived prostaglandin-e2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activity. Clinical Cancer Research, 20(15), 4096-4106. DOI: https://doi.org/10.1158/1078-0432.CCR-14-0635

Marvel, D., & Gabrilovich, D. I. (2015). Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. The Journal of clinical investigation, 125(9), 3356-3364. DOI: https://doi.org/10.1172/JCI80005

Mielcarek, M., Martin, P. J., & Torok-Storb, B. (1997). Suppression of alloantigen-induced T-cell proliferation by CD14+ cells derived from granulocyte colony-stimulating factor–mobilized peripheral blood mononuclear cells. Blood, 89(5), 1629-1634. DOI: https://doi.org/10.1182/blood.V89.5.1629.1629_1629_1634

Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., . . . Van Ginderachter, J. A. (2008). Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell–suppressive activity. Blood, 111(8), 4233-4244. DOI: https://doi.org/10.1182/blood-2007-07-099226

Movahedi, K., Laoui, D., Gysemans, C., Baeten, M., Stangé, G., Van den Bossche, J., . . . De Baetselier, P. (2010). Different tumor

An update review on immunosuppressive cells; Myeloid derived suppressor cells (MDSCs) in cancers

microenvironments contain functionally distinct subsets of macrophages derived from Ly6C (high) monocytes. Cancer Research, 70(14), 5728- 5739. DOI: https://doi.org/10.1158/0008-5472.CAN-09-4672

Nagaraj, S., Collazo, M., Corzo, C. A., Youn, J.-I., Ortiz, M., Quiceno, D., & Gabrilovich, D. I. (2009). Regulatory myeloid suppressor cells in health and disease. Cancer Research, 69(19), 7503-7506. DOI: https://doi.org/10.1158/0008-5472.CAN-09-2152

Nagaraj, S., Gupta, K., Pisarev, V., Kinarsky, L., Sherman, S., Kang, L., . . . Gabrilovich, D. I. (2007). Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer. Nature medicine, 13(7), 828-835. DOI: https://doi.org/10.1038/nm1609

Nagaraj, S., Youn, J.-I., Weber, H., Iclozan, C., Lu, L., Cotter, M. J., . . . Antonia, S. (2010). Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clinical Cancer Research, 16(6), 1812-1823. DOI: https://doi.org/10.1158/1078-0432.CCR-09-3272

Obermajer, N., & Kalinski, P. (2012a). Generation of myeloid-derived suppressor cells using prostaglandin E 2. Transplantation research, 1(1), 15. DOI: https://doi.org/10.1186/2047-1440-1-15

Obermajer, N., & Kalinski, P. (2012b). Key role of the positive feedback between PGE2 and COX2 in the biology of myeloid-derived suppressor cells. OncoImmunology, 1(5), 762-764. DOI: https://doi.org/10.4161/onci.19681

Obermajer, N., Wong, J. L., Edwards, R. P., Odunsi, K., Moysich, K., & Kalinski, P. (2012). PGE2-driven induction and maintenance of cancer- associated myeloid-derived suppressor cells. Immunological Investigations, 41(6-7), 635-657. DOI: https://doi.org/10.3109/08820139.2012.695417

Ostrand-Rosenberg, S., & Sinha, P. (2009). Myeloid-derived suppressor cells: linking inflammation and cancer. The Journal of Immunology, 182(8), 4499-4506. DOI: https://doi.org/10.4049/jimmunol.0802740

Park, S.-G., & Lee, C. R. (2017). Myeloid derived suppressor cells are controlled by regulatory T cells via TGF-b during murine colitis: Am Assoc Immnol. DOI: https://doi.org/10.4049/jimmunol.198.Supp.80.18

Porembka, M. R., Mitchem, J. B., Belt, B. A., Hsieh, C.-S., Lee, H.-M., Herndon, J., . . . Goedegebuure, P. (2012). Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunology, Immunotherapy, 61(9), 1373-1385. DOI: https://doi.org/10.1007/s00262-011-1178-0

Poschke, I., Mougiakakos, D., Hansson, J., Masucci, G. V., & Kiessling, R. (2010). Immature immunosuppressive CD14+ HLA-DR−/low cells in

melanoma patients are Stat3hi and overexpress CD80, CD83, and DC- sign. Cancer Research, 70(11), 4335-4345. DOI: https://doi.org/10.1158/0008-5472.CAN-09-3767

Qu, P., Boelte, K. C., & Lin, P. C. (2012). Negative regulation of myeloid- derived suppressor cells in cancer. Immunological Investigations, 41(6- 7), 562-580. DOI: https://doi.org/10.3109/08820139.2012.685538

Qu, P., Yan, C., Blum, J. S., Kapur, R., & Du, H. (2011). Myeloid-specific expression of human lysosomal acid lipase corrects malformation and malfunction of myeloid-derived suppressor cells in lal−/− mice. The Journal of Immunology, 187(7), 3854-3866. DOI: https://doi.org/10.4049/jimmunol.1003358

Raber, P. L., Thevenot, P., Sierra, R., Wyczechowska, D., Halle, D., Ramirez, M. E., . . . Wilk, A. (2014). Subpopulations of myeloid‐derived suppressor cells impair T cell responses through independent nitric oxide‐related pathways. International journal of cancer, 134(12), 2853- 2864. DOI: https://doi.org/10.1002/ijc.28622

Rodriguez, P. C., Ernstoff, M. S., Hernandez, C., Atkins, M., Zabaleta, J., Sierra, R., & Ochoa, A. C. (2009). Arginase I–producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Research, 69(4), 1553-1560. DOI: https://doi.org/10.1158/0008-5472.CAN-08-1921

Rodriguez, P. C., Hernandez, C. P., Quiceno, D., Dubinett, S. M., Zabaleta, J., Ochoa, J. B., . . . Ochoa, A. C. (2005). Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma. The Journal of experimental medicine, 202(7), 931-939. DOI: https://doi.org/10.1084/jem.20050715

Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A., & Dudley, M. E. (2008). Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nature Reviews Cancer, 8(4), 299-308. DOI: https://doi.org/10.1038/nrc2355

Rosenberg, S. A., Yang, J. C., & Restifo, N. P. (2004). Cancer immunotherapy:

moving beyond current vaccines. Nature medicine, 10(9), 909-915. Schlecker, E., Stojanovic, A., Eisen, C., Quack, C., Falk, C. S., Umansky, V., &

Cerwenka, A. (2012). Tumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growth. The Journal of Immunology, 189(12), 5602-5611. DOI: https://doi.org/10.4049/jimmunol.1201018

Schuster, M., Nechansky, A., & Kircheis, R. (2006). Cancer immunotherapy. DOI: https://doi.org/10.1002/biot.200500044

Biotechnology journal, 1(2), 138-147.

Serafini, P., Borrello, I., & Bronte, V. (2006). Myeloid suppressor cells in

cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Paper presented at the Seminars in cancer biology.

An update review on immunosuppressive cells; Myeloid derived suppressor cells (MDSCs) in cancers

Sinha, P., Clements, V. K., Fulton, A. M., & Ostrand-Rosenberg, S. (2007). Prostaglandin E2 promotes tumor progression by inducing myeloid- derived suppressor cells. Cancer Research, 67(9), 4507-4513. DOI: https://doi.org/10.1158/0008-5472.CAN-06-4174

Srivastava, M. K., Sinha, P., Clements, V. K., Rodriguez, P., & Ostrand- Rosenberg, S. (2010). Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Research, 70(1), 68-77. DOI: https://doi.org/10.1158/0008-5472.CAN-09-2587

Sun, L., Clavijo, P. E., Robbins, Y., Patel, P., Friedman, J., Greene, S., . . . Horn, L. A. (2019). Inhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapy. JCI insight, 4(7). DOI: https://doi.org/10.1172/jci.insight.126853

Talmadge, J., Reed, E., Kessinger, A., Kuszynski, C., Perry, G., Gordy, C., . . . Letheby, B. (1996). Immunologic attributes of cytokine mobilized peripheral blood stem cells and recovery following transplantation. Bone marrow transplantation, 17(1), 101-109.

Talmadge, J. E., & Gabrilovich, D. I. (2013). History of myeloid-derived

suppressor cells. Nature Reviews Cancer, 13(10), 739-752.

Tan, M. C., Goedegebuure, P. S., Belt, B. A., Flaherty, B., Sankpal, N.,

Gillanders, W. E., . . . Linehan, D. C. (2009). Disruption of CCR5- dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. The Journal of Immunology, 182(3), 1746-1755. DOI: https://doi.org/10.4049/jimmunol.182.3.1746

Turovskaya, O., Foell, D., Sinha, P., Vogl, T., Newlin, R., Nayak, J., . . . Bierhaus, A. (2008). RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis, 29(10), 2035-2043. DOI: https://doi.org/10.1093/carcin/bgn188

Umansky, V., Blattner, C., Gebhardt, C., & Utikal, J. (2016). The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines, 4(4), 36. DOI: https://doi.org/10.3390/vaccines4040036

Valenti, R., Huber, V., Iero, M., Filipazzi, P., Parmiani, G., & Rivoltini, L. (2007). Tumor-released microvesicles as vehicles of immunosuppression. Cancer Research, 67(7), 2912-2915. DOI: https://doi.org/10.1158/0008-5472.CAN-07-0520

Villinger, F. (2003). Cytokines as clinical adjuvants: how far are we? Expert DOI: https://doi.org/10.1586/14760584.2.2.317

review of vaccines, 2(2), 317-326.

Wang, Y., Ding, Y., Guo, N., & Wang, S. (2019). MDSCs: Key criminals of

tumor pre-metastatic niche formation. Frontiers in immunology, 10.

Wu, L., Du, H., Li, Y., Qu, P., & Yan, C. (2011). Signal transducer and activator of transcription 3 (Stat3C) promotes myeloid-derived suppressor cell expansion and immune suppression during lung tumorigenesis. The American journal of pathology, 179(4), 2131-2141. DOI: https://doi.org/10.1016/j.ajpath.2011.06.028

Yang, J. C., Sherry, R. M., Steinberg, S. M., Topalian, S. L., Schwartzentruber, D. J., Hwu, P., . . . White, D. E. (2003). Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. Journal of Clinical Oncology, 21(16), 3127-3132. DOI: https://doi.org/10.1200/JCO.2003.02.122

Yang, R., Cai, Z., Zhang, Y., Yutzy, W. H., Roby, K. F., & Roden, R. B. (2006). CD80 in immune suppression by mouse ovarian carcinoma–associated Gr-1+ CD11b+ myeloid cells. Cancer Research, 66(13), 6807-6815. DOI: https://doi.org/10.1158/0008-5472.CAN-05-3755

Youn, J.-I., Collazo, M., Shalova, I. N., Biswas, S. K., & Gabrilovich, D. I. (2012). Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Journal of leukocyte biology, 91(1), 167-181. DOI: https://doi.org/10.1189/jlb.0311177

Youn, J.-I., Nagaraj, S., Collazo, M., & Gabrilovich, D. I. (2008). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. The Journal of Immunology, 181(8), 5791-5802. DOI: https://doi.org/10.4049/jimmunol.181.8.5791

Zhang, H., Nguyen-Jackson, H., Panopoulos, A. D., Li, H. S., Murray, P. J., & Watowich, S. S. (2010). STAT3 controls myeloid progenitor growth during emergency granulopoiesis. Blood, The Journal of the American Society of Hematology, 116(14), 2462-2471. DOI: https://doi.org/10.1182/blood-2009-12-259630

Zhao, Y., Wu, T., Shao, S., Shi, B., & Zhao, Y. (2015). The phenotype, development and biological function of myeloid-derived suppressor cells: Molecular regulation of MDSCs. OncoImmunology(just-accepted), 00-00. DOI: https://doi.org/10.1080/2162402X.2015.1004983

Zhou, Z., French, D. L., Ma, G., Eisenstein, S., Chen, Y., Divino, C. M., . . . Pan, P. Y. (2010). Development and Function of Myeloid‐Derived Suppressor Cells Generated From Mouse Embryonic and Hematopoietic Stem Cells. Stem Cells, 28(3), 620-632. DOI: https://doi.org/10.1002/stem.301

Downloads

Published

2020-06-30

How to Cite

Albarbar, B. (2020). AN UPDATE REVIEW ON IMMUNOSUPPRESSIVE CELLS; MYELOID DERIVED SUPPRESSOR CELLS (MDSCS) IN CANCERS . Journal of Alasmarya University, 5(1), 58–76. https://doi.org/10.59743/aujas.v5i1.1641