Electrochemical and Mechanical Properties of Surface Films and Their Relation To the Stress Corrosion Cracking of Steels

المؤلفون

  • Giuma Sasi Chemical Engineering Department, Faculty of Engineering, El-Merghap University, Al-Khoms, Libya

DOI:

https://doi.org/10.59743/aujas.v1i2.1559

الملخص

Electrochemical  and  mechanical  techniques  were  used  to  grow  films  and  study  some  of  their  properties.  Polarization  curve  measurements  were  performed  on  Cr-Mo  alloy  steel  specimens  in  carbonate/bicarbonate  solutions at 75 ˚C .Films were grown at -700, -725, -750, -800 and -850 mV at 75 ˚C. It was found that stress  corrosion cracking (SCC) was most likely to occur between -650 and -750 mV (SCE). AC impedance and nano- hardness of the films were measured. The results showed that the impedance of the films grown within (SCC)  range  had  diffusion  control  behavior  which  indicated  passivity  whereas  the  impedance  of  the  films  grown  outside the (SCC) range showed charge transfer behavior which meant that they were not passive. This result  implies that the passive films might cause SCC in Steels. The films grown within the (SCC) range had  relatively   high hardness compared to those grown outside the range which indicated that the films grown within the range  were brittle and might induce SCC in steels. 

المراجع

Congleton, J., & Parkins, R. N. (1988). Stress corrosion cracking of steel in high temperature DOI: https://doi.org/10.5006/1.3583940

water. Corrosion, 44(5), 290-298.

Congleton, J., Shoji, T., & Parkins, R. N. (1985). The stress corrosion cracking of reactor

pressure vessel steel in high temperature water. Corrosion Science, 25(8-9), 633-650. Fontana, M. G. (2005). Corrosion engineering. Tata McGraw-Hill Education.

Gao, X., Wu, X., Zhang, Z., Guan, H., & Han, E. H. (2007). Characterization of oxide films

grown on 316L stainless steel exposed to H2O2-containing supercritical water. The Journal of supercritical fluids, 42(1), 157-163.

Jones, R. H., Ricker, R. E., & Jones, R. H. (1992). Mechanisms of Stress Corrosion Cracking in Stress Corrosion Cracking—Materials Performance and Evaluation. Materials Park, OH: ASM International, 1. DOI: https://doi.org/10.31399/asm.tb.sccmpe2.t55090001

Katada, Y., & Nagata, N. (1985). The effect of temperature on fatigue crack growth behaviour of a low alloy pressure vessel steel in a simulated BWR environment. Corrosion Science, 25(8-9), 693-704.. DOI: https://doi.org/10.1016/0010-938X(85)90006-X

Nazarov, A., Vivier, V., Thierry, D., Vucko, F., & Tribollet, B. (2017). Effect of Mechanical Stress on the Properties of Steel Surfaces: Scanning Kelvin Probe and Local Electrochemical Impedance Study. Journal of The Electrochemical Society, 164(2), C66-C74. DOI: https://doi.org/10.1149/2.1311702jes

Newman, R. C., & Procter, R. P. M. (1990). Stress corrosion cracking: 1965–1990. British DOI: https://doi.org/10.1179/000705990799156373

Corrosion Journal, 25(4), 259-270.

Parkins, R. N. (1972). Stress corrosion spectrum. British Corrosion Journal, 7(1), 15-28. DOI: https://doi.org/10.1179/000705972798323350

Parkins, R. N. (1985). Significance of pits, crevices, and cracks in environment-sensitive DOI: https://doi.org/10.1179/mst.1985.1.6.480

crack growth. Materials science and technology, 1(6), 480-486.

Schütze, M. (1997). Protective oxide scales and their breakdown. Wiley.

Stahle, R. W., Hochmann, J., McCright, R. D., Slater, J. E., & Shatynski, S. R. (1979). Stress corrosion cracking and hydrogen embrittlement of iron base alloys. Journal of The Electrochemical Society, 126(5), 215C-215C.. DOI: https://doi.org/10.1149/1.2129122

Turnbull, A. (1993). Modelling of environmental assisted cracking, Corros. Sci., 34: 921–969. DOI: https://doi.org/10.1016/0010-938X(93)90072-O

التنزيلات

منشور

30-12-2016

كيفية الاقتباس

Sasi, G. (2016). Electrochemical and Mechanical Properties of Surface Films and Their Relation To the Stress Corrosion Cracking of Steels . مجلة الجامعة الأسمرية, 1(2), 100–106. https://doi.org/10.59743/aujas.v1i2.1559