Statistical Design Optimization of Hydrogen Production through Ethanol Steam Reforming using a Ni/Al2O3 Catalyst

Authors

  • Ahmed Bshish Department of Chemical and Petroleum Engineering, Faculty of Engineering, elmergib University, Al khoms, Libya.
  • Ali Ebshish Department of Chemical and Petroleum Engineering, Faculty of Engineering, elmergib University, Al khoms, Libya.
  • Zahira Yaakob Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.

DOI:

https://doi.org/10.59743/aujas.v2i1.1092

Keywords:

ethanol reforming, response surface, experimental design, optimization.

Abstract

Factorial experimental design and response surface methodology, together with central composite design, were employed to investigate the effect of the process variables in hydrogen production via ethanol steam reforming. The influence of temperature (T), water– ethanol molar ratio (MR), and liquid hourly space velocity (SV) on hydrogen yield (

References

Bshish, A., Yaakob, Z., Narayanan, B., Ramakrishnan, R., & Ebshish, A. 2011. Steam- reforming of ethanol for hydrogen production. Chemical Papers, 65(3): 251-266.

Garbarino, G., Lagazzo, A., Riani, P., & Busca, G. 2013. Steam reforming of ethanol–phenol mixture on Ni/Al2O3: Effect of Ni loading and sulphur deactivation. Applied Catalysis B: Environmental, 129(0): 460-472.

Li, S., Li, M., Zhang, C., Wang, S., Ma, X., & Gong, J. 2012. Steam reforming of ethanol over Ni/ZrO2 catalysts: Effect of support on product distribution. International Journal of Hydrogen Energy, 37(3): 2940-2949.

Li, Z., Hu, X., Zhang, L., Liu, S., & Lu, G. 2012. Steam reforming of acetic acid over Ni/ZrO2 catalysts: Effects of nickel loading and particle size on product distribution and coke formation. Applied Catalysis A: General, 417–418(0): 281-289.

Liu, Q., Liu, Z., Zhou, X., Li, C., & Ding, J. 2011. Hydrogen production by steam reforming of ethanol over copper doped Ni/CeO2 catalysts. JOURNAL OF RARE EARTHS, 29(9): 872-877.

Pérez-Hernández, R., Gutiérrez-Martínez, A., Palacios, J., Vega-Hernández, M., & Rodríguez- Lugo, V. 2011. Hydrogen production by oxidative steam reforming of methanol over Ni/CeO2– ZrO2 catalysts. International Journal of Hydrogen Energy, 36(11): 6601-6608.

Rossetti, I., Biffi, C., Bianchi, C. L., Nichele, V., Signoretto, M., Menegazzo, F., Finocchio, E., Ramis, G., & Di Michele, A. 2012. Ni/SiO2 and Ni/ZrO2 catalysts for the steam reforming of ethanol. Applied Catalysis B: Environmental, 117–118(0): 384-396.

Song, J.H., Han, S.J. & Song. 2107. Hydrogen Production by Steam Reforming of Ethanol Over Mesoporous Ni–Al2O3–ZrO2 Catalysts. Catalysis Surveys from Asia, 21 (3): 114–129.

Calles, J.; Carrero, A.; Vizcaíno, A.; Lindo, M. 2015. Effect of Ce and Zr addition to Ni/SiO2 catalysts for hydrogen production through ethanol steam reforming. Catalysts, 5: 58–76.

Han SJ, Song JH, Bang Y, Yoo J, Park S, Kang KH, et al. 2016. Hydrogen production by steam reforming of ethanol over mesoporous Cu-Ni-Al2O3-ZrO2 xerogel catalysts. Int J Hydrogen Energy, 41: 2554-63.

Aupretre, Fabien Descorme, Claude Duprez, Daniel Casanave, Dominique Uzio, & Denis. 2005. Ethanol steam reforming over MgxNi1-xAl2O3 spinel oxide-supported Rh catalysts. Journal of Catalysis, 233(2): 464-477.

Benito, M. S., J. L. Isabel, R. Padilla, R. Arjona, R. Daza, L. 2005. Bio-ethanol steam reforming: Insights on the mechanism for hydrogen production. Journal of Power Sources, 151: .11-17

Mas, V. K., R. Amadeo, N. Laborde, M. 2006. Thermodynamic analysis of ethanol/water system with the stoichiometric method. International Journal of Hydrogen Energy, 31(1): 21-28

Ni, M. L., Dennis Y. C. Leung, Michael K. H. 2007. A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 32(15): 3238-3247.

Rabenstein, G. H., Viktor. 2008. Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming: A thermodynamic analysis. Journal of Power Sources, 185(2): 1293-1304.

Larentis, A. L., de Resende, N. S., Salim, V. M. M., & Pinto, J. C. 2001. Modeling and optimization of the combined carbon dioxide reforming and partial oxidation of natural gas. Applied Catalysis A: General, 215(1–2): 211-224.

Ghafari, S., Aziz, H. A., Isa, M. H., & Zinatizadeh, A. A. 2009. Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly- aluminum chloride (PAC) and alum. Journal of Hazardous Materials, 163(2–3): 650-656.

Monteagudo, J. M., Rodríguez, L., Rincón, J., & Fuertes, J. 1994. Optimization of the conditions of the fermentation of beet molasses to lactic acid by Lactobacillus delbrueckii. Acta Biotechnologica, 14(3): 251-260.

Frišták, V., Remenárová, L., & Lesný, J. 2012. Response surface methodology as optimization tool in study of competitive effect of Ca2+ and Mg2+ ions in sorption process of Co2+ by dried activated sludge. Journal of Microbiology, Biotechnology and Food Sciences, 1(5): 1235-1249.

Kandananond, K. 2010. Using the response surface method to optimize the turning process of AISI 12L14 steel. Advances in Mechanical Engineering, 2010.

Kong, K. W., Ismail, A., Tan, C. P., & Rajab, N. F. 2010. Optimization of oven drying conditions for lycopene content and lipophilic antioxidant capacity in a by-product of the pink guava puree industry using response surface methodology. LWT - Food Science and Technology, 43(5): 729-735.

Monyanon, S., Luengnaruemitchai, A., & Pongstabodee, S. 2012. Optimization of methanol steam reforming over a Au/CuO–CeO2 catalyst by statistically designed experiments. Fuel Processing Technology, 96(0): 160-168.

Sasikumar, E., & Viruthagiri, T. 2008. Optimization of Process Conditions Using Response Surface Methodology (RSM) for Ethanol Production from Pretreated Sugarcane Bagasse: Kinetics and Modeling. BioEnergy Research, 1(3-4): 239-247.

Ritthiruangdej, P., Srikamnoy, W., & Amatayakul, T. 2011. Optimization of jackfruit sauce formulations using response surface methodology. Kasetsart Journal - Natural Science, 45(2): .325-334

Seo, J. G.; Youn, M. H.; Cho, K. M.; Park, S.; Song, I. K. 2007. Hydrogen production by steam reforming of liquefied natural gas over a nickel catalyst supported on mesoporous alumina xerogel. Journal of Power Sources, 173, (2): 943-949.

Mas, V. K., R. Amadeo, N. Laborde, M. 2006. Thermodynamic analysis of ethanol/water system with the stoichiometric method. International Journal of Hydrogen Energy, 31(1): 21-28

Downloads

Published

2017-06-30

How to Cite

Bshish, A., Ebshish, A., & Yaakob, Z. (2017). Statistical Design Optimization of Hydrogen Production through Ethanol Steam Reforming using a Ni/Al2O3 Catalyst. Journal of Alasmarya University, 2(1), 123–112. https://doi.org/10.59743/aujas.v2i1.1092