نموذج كفاءة العمل على أساس الموقف في مهمة الحفر الأفقي

المؤلفون

  • علي أحمد شكشك Mechanical and Industrial Engineering, Higher Institute of Engineering Technology-Zliten, Libya

DOI:

https://doi.org/10.59743/aujas.v6i1.621

الكلمات المفتاحية:

إنفاق طاقة النشاط (AEE) ،، الطاقة المهدرة للنشاط (AWE) ،، الوضع (posture)،، كفاءة العمل (WE).

الملخص

قد يساهم الوقوف غير المريح في العمل ليس فقط في تطور الاضطرابات العضلية الهيكلية (MSDs) ولكن أيضًا في فقدان الطاقة وانخفاض كفاءة العمل (WE). لم يحظ قياس WE على أساس إنفاق طاقة النشاط (AEE) بالكثير من الاهتمام في أماكن العمل. الهدف من هذه الدراسة هو تطوير نموذج لل WE يعتمد على الموقف في مهمة الحفر الأفقي. شارك في التجربة عشرة أفراد ، جميعهم من الرجال بمتوسط ​​عمر 23.3 ± 0. 67. تم اختبار ستة أوضاع للوقوف بين الكتف والجذع. كانت AEE و WE هي المتغيرات التابعة. تم استخدام القياسات المتكررة في  ANOVA لتحليل البيانات. أظهرت النتائج اتجاهات ذات دلالة إحصائية عالية (P <0.01) لزيادة AEEعندما يبتعد الجذع والكتف عن الوضع المحايد. بشكل عام ، توفر هذه النتائج رؤى قيمة لتقييم WE على أساس AEE والنشاط المهدر للطاقة (AWE) بسبب الحركات غير المنتجة اثناء الوقوف في اوضاع صعبة، مع اتخاذ الموقف المحايد كمرجع صفري للطاقة المهدرة..

المراجع

Basahel, A.M., Impacts of postural stress and assembling task workload interactions on individual performance by Saudis. International Journal of Current Engineering & Technology, 2014. 4: p. 3359-3369.

Zein, R.M., et al., A Survey on Working Postures among Malaysian Industrial Workers. Procedia Manufacturing, 2015. 2: p. 450-459. DOI: https://doi.org/10.1016/j.promfg.2015.07.078

Kong, Y.-K., et al., The effects of coordinated upper-limb postures of back, shoulder, and elbow flexion angles on the subjective discomfort rating, heart rate, and muscle activities. Journal of the Ergonomics Society of Korea, 2011. 30(6): p. 695-703. DOI: https://doi.org/10.5143/JESK.2011.30.6.695

Chung, M.K., I. Lee, and Y.S. Yeo, Physiological workload evaluation of screw driving tasks in automobile assembly jobs. International Journal of Industrial Ergonomics, 2001. 28(3): p. 181-188. DOI: https://doi.org/10.1016/S0169-8141(01)00031-2

Saha, D., et al., The effect of trunk-flexed postures on balance and metabolic energy expenditure during standing. Spine, 2007. 32(15): p. 1605-1611. DOI: https://doi.org/10.1097/BRS.0b013e318074d515

Damecour, C., et al., Comparison of two heights for forward-placed trunk support with standing work. Applied ergonomics, 2010. 41(4): p. 536-541. DOI: https://doi.org/10.1016/j.apergo.2009.11.004

Farooq, M. and A.A. Khan, Effects of shoulder rotation combined with elbow flexion on discomfort and EMG activity of ECRB muscle. International Journal of Industrial Ergonomics, 2014. 44(6): p. 882-891. DOI: https://doi.org/10.1016/j.ergon.2013.10.010

Khan, A.A., Z. Khan, and M. Mukarram, Effect of elbow flection on grip strength in vertical and horizontal directions. Journal of human ergology, 2013. 42(1_2): p. 13-22.

Lee, T.H., The effects of arm posture and holding time on holding capability and muscle activity. Int J Occup Saf Ergon, 2017. 23(3): p. 410-414. DOI: https://doi.org/10.1080/10803548.2016.1195129

Sasikumar, R. and S. India, Ergonomics in poor hand tools design and muscoskeletal disorders of workers during various working environment. Advances in Natural and Applied Sciences, 2016. 10(7 SE): p. 284-293.

Brookham, R.L., J.M. Wong, and C.R. Dickerson, Upper limb posture and submaximal hand tasks influence shoulder muscle activity. International Journal of Industrial Ergonomics, 2010. 40(3): p. 337-344. DOI: https://doi.org/10.1016/j.ergon.2009.11.006

Hills, A.P., N. Mokhtar, and N.M. Byrne, Assessment of physical activity and energy expenditure: an overview of objective measures. Frontiers in nutrition, 2014. 1: p. 5. DOI: https://doi.org/10.3389/fnut.2014.00005

Strath, S.J., S. Brage, and U. Ekelund, Integration of physiological and accelerometer data to improve physical activity assessment. Medicine and science in sports and exercise, 2005. 37(11 Suppl): p. S563-71. DOI: https://doi.org/10.1249/01.mss.0000185650.68232.3f

Brage, S., et al., Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure. Journal of Applied Physiology, 2004. 96(1): p. 343-351. DOI: https://doi.org/10.1152/japplphysiol.00703.2003

Bourke, A.K., et al. Energy expenditure estimation using accelerometry and heart rate for multiple sclerosis and healthy older adults. in Wearable and Implantable Body Sensor Networks Workshops (BSN Workshops). 2014. Zurich, Switzerland IEEE. DOI: https://doi.org/10.1109/BSN.Workshops.2014.18

Benden, M.E., et al., The evaluation of the impact of a stand-biased desk on energy expenditure and physical activity for elementary school students. International journal of environmental research and public health, 2014. 11(9): p. 9361-75. DOI: https://doi.org/10.3390/ijerph110909361

Nur, N.M., et al., The effects of energy expenditure rate on work productivity performance at different levels of production standard time. Journal of physical therapy science, 2015b. 27(8): p. 2431. DOI: https://doi.org/10.1589/jpts.27.2431

Shephard, R.J. and Y. Aoyagi, Measurement of human energy expenditure, with particular reference to field studies: an historical perspective. European journal of applied physiology, 2012. 112(8): p. 2785-2815. DOI: https://doi.org/10.1007/s00421-011-2268-6

Kahya, E., The effects of job characteristics and working conditions on job performance. International journal of industrial ergonomics, 2007. 37(6): p. 515-523. DOI: https://doi.org/10.1016/j.ergon.2007.02.006

Hintzy-Cloutier, F., K. Zameziati, and A. Belli, Influence of the base-line determination on work efficiency during submaximal cycling. Journal of sports medicine and physical fitness, 2003. 43(1): p. 51.

Marsh, A.P., P.E. Martin, and K.O. Foley, Effect of cadence, cycling experience, and aerobic power on delta efficiency during cycling. Medicine and Science in Sports and Exercise, 2000. 32(9): p. 1630-1634. DOI: https://doi.org/10.1097/00005768-200009000-00017

Mian, O.S., et al., Metabolic cost, mechanical work, and efficiency during walking in young and older men. Acta Physiologica, 2006. 186(2): p. 127-139. DOI: https://doi.org/10.1111/j.1748-1716.2006.01522.x

Nardello, F., L.P. Ardigò, and A.E. Minetti, Measured and predicted mechanical internal work in human locomotion. Human movement science, 2011. 30(1): p. 90-104. DOI: https://doi.org/10.1016/j.humov.2010.05.012

Sandbakk, Ø., et al., Metabolic rate and gross efficiency at high work rates in world class and national level sprint skiers. European journal of applied physiology, 2010. 109(3): p. 473-481. DOI: https://doi.org/10.1007/s00421-010-1372-3

Saibene, F. and A.E. Minetti, Biomechanical and physiological aspects of legged locomotion in humans. European journal of applied physiology, 2003. 88(4-5): p. 297-316. DOI: https://doi.org/10.1007/s00421-002-0654-9

Doyle, G.A., Determination of a total body model of efficiency applied to a rowing movement in humans. 2016, University of East London.

Ettema, G. and H.W. Lorås, Efficiency in cycling: a review. European journal of applied physiology, 2009. 106(1): p. 1-14. DOI: https://doi.org/10.1007/s00421-009-1008-7

Neptune, R.R., C.P. McGowan, and S.A. Kautz, Forward dynamics simulations provide insight into muscle mechanical work during human locomotion. Exercise and sport sciences reviews, 2009. 37(4): p. 203. DOI: https://doi.org/10.1097/JES.0b013e3181b7ea29

Sandbakk, Ø., A.M. Hegge, and G. Ettema, The role of incline, performance level, and gender on the gross mechanical efficiency of roller ski skating. Frontiers in physiology, 2013. 4: p. 293. DOI: https://doi.org/10.3389/fphys.2013.00293

Brage, S., et al., Reliability and validity of the combined heart rate and movement sensor Actiheart. European journal of clinical nutrition, 2005. 59(4): p. 561-570. DOI: https://doi.org/10.1038/sj.ejcn.1602118

Spierer, D.K., et al., A comparison of energy expenditure estimates from the Actiheart and Actical physical activity monitors during low intensity activities, walking, and jogging. European journal of applied physiology, 2011. 111(4): p. 659-667. DOI: https://doi.org/10.1007/s00421-010-1672-7

Brage, S., et al., Estimation of free-living energy expenditure by heart rate and movement sensing: a doubly-labelled water study. PloS one, 2015. 10(9): p. e0137206. DOI: https://doi.org/10.1371/journal.pone.0137206

Thompson, D., et al., Assessment of low-to-moderate intensity physical activity thermogenesis in young adults using synchronized heart rate and accelerometry with branched-equation modeling. The Journal of nutrition, 2006. 136(4): p. 1037-1042. DOI: https://doi.org/10.1093/jn/136.4.1037

Crouter, S.E., J.R. Churilla, and D.R. Bassett, Accuracy of the Actiheart for the assessment of energy expenditure in adults. European journal of clinical nutrition, 2008. 62(6): p. 704-711. DOI: https://doi.org/10.1038/sj.ejcn.1602766

Corty, E.W., Using and Interpreting Statistics: A Practical Text for the Behavioral, Social, and Health Sciences. 3rd Edition ed. 2013: Kindle Edition

Riad, H.M., Introduction to statistices. 2014: SAGE.

Faul, F., et al., Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behavior research methods, 2009. 41(4): p. 1149-1160. DOI: https://doi.org/10.3758/BRM.41.4.1149

Faul, F., et al., G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior research methods, 2007. 39(2): p. 175-191. DOI: https://doi.org/10.3758/BF03193146

De, S., et al., Effect of body posture on hand grip strength in adult Bengalee population. Journal of Exercise Science and Physiotherapy, 2011. 7(2): p. 79-88. DOI: https://doi.org/10.18376//2011/v7i2/67611

التنزيلات

منشور

30-03-2021

كيفية الاقتباس

شكشك ع. أ. (2021). نموذج كفاءة العمل على أساس الموقف في مهمة الحفر الأفقي. مجلة الجامعة الأسمرية, 6(1), 1–12. https://doi.org/10.59743/aujas.v6i1.621