استخدام المجال الكهربائي النبضي كتقنية لا حرارية في معاملة وحفظ الغذاء: دراسة مرجعية
DOI:
https://doi.org/10.59743/jmset.v9i1.149الكلمات المفتاحية:
المجال الكهربائي النبضي PEF، تثبيط الأحياء المجهرية، تثبيط الإنزيمات، المركبات النشطة بايولوجياًالملخص
سيطرت الطرق الحرارية بشكل عام على صناعة وتجهيز الأغذية. ومع ذلك، قد تؤدي مثل هذه المعاملات إلى العديد من التغييرات في الخصائص الحسية والوظيفية للأغذية. ظهرت العديد من التقنيات اللاحرارية خلال السنوات الماضية، نتيجة للطلب المتزايد من قبل المستهلكين في تجهيز أغذية أمنة وعالية الجودة، من بين هذه التقنيات هي تقنية المجال الكهربائي النبضي. يعد المجال الكهربائي النبضيPulsed Electric Field (PEF) أحد أكثر طرق اللاحرارية الواعدة التي تضمن المحافظة على الخصائص التغذوية للمادة الغذائية يعمل الـــPEF على تثبيط الأحياء المجهرية والإنزيمات الموجودة في الأغذية ومنتجاتها مع الحد الأدنى من التغييرات في خصائصها الفيزيائية والحسية والوظيفية، وبالتالي يمكن القول أن الــــPEF يعد خيارًا بديلاً واعداً للمعاملات الحرارية في معاملة وحفظ مختلف المنتجات الغذائية، لاسيما الأغذية السائلة. لذا جاءت هذه الدراسة المرجعية بهدف تلخيص المبادئ الأساسية لعمل المجالات الكهربائية النبضبة ودورها في تحسين الخصائص الوظيفية للأغذية فضلا عن تأثيرها المثبط للأنزيمات والأحياء المجهرية.
المراجع
Adebo, O.A.; Molelekoa, T.; Makhuvele, R.; Adebiyi, J.A.; Oyedeji, A.B.; Gbashi, S.; Adefisoye, M.A.; Ogundele, O.M. and Njobeh, P.B. (2021). A review on novel non-thermal food processing techniques for mycotoxin reduction. International Journal of Food Science & Technology, 56, 13–27. DOI: https://doi.org/10.1111/ijfs.14734
Agcam, E.; Akyıldız, A. and Evrendilek, G. A. (2014). Effects of PEF and heat pasteurization on PME activity in orange juice with regard to a new inactivation kinetic model. Food Chemistry, 165, 70-76. DOI: https://doi.org/10.1016/j.foodchem.2014.05.097
Aguiló‐Aguayo, I.; Soliva‐Fortuny, R., and Martín‐Belloso, O. (2010a). High‐intensity pulsed electric fields processing parameters affecting polyphenoloxidase activity of strawberry juice. Journal of Food Science, 75(7), C641-C646. DOI: https://doi.org/10.1111/j.1750-3841.2010.01735.x
Aguiló-Aguayo, I. ; Soliva-Fortuny, R. and Martín-Belloso, O. (2010b). Impact of high-intensity pulsed electric field variables affecting peroxidase and lipoxygenase activities of watermelon juice. LWT-Food Science and Technology, 43(6), 897-902. DOI: https://doi.org/10.1016/j.lwt.2010.01.022
Alirezalu, K.; Munekata, P. E.; Parniakov, O.; Barba, F. J.; Witt, J.; Toepfl, S.; and Lorenzo, J. M. (2020). Pulsed electric field and mild heating for milk processing: A review on recent advances. Journal of The Science of Food and Agriculture, 100(1), 16-24. DOI: https://doi.org/10.1002/jsfa.9942
Arshad, R. N., Abdul-Malek, Z., Munir, A., Buntat, Z., Ahmad, M. H., Jusoh, Y. M., and Aadil, R. M. (2020). Electrical systems for pulsed electric field applications in the food industry: An engineering perspective. Trends in Food Science & Technology, 104, 1-13. DOI: https://doi.org/10.1016/j.tifs.2020.07.008
Augustin, M. A., Riley, M., Stockmann, R., Bennett, L., Kahl, A., Lockett, T., and Cobiac, L. (2016). Role of food processing in food and nutrition security. Trends in Food Science & Technology, 56, 115-125. DOI: https://doi.org/10.1016/j.tifs.2016.08.005
Barba, F. J. (2017). Microalgae and seaweeds for food applications: Challenges and perspectives. Food Research International, 99(Part3), 969-970. DOI: https://doi.org/10.1016/j.foodres.2016.12.022
Barba, F. J., Koubaa, M., do Prado-Silva, L., Orlien, V., and de Souza Sant’Ana, A. (2017). Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends in Food Science & Technology, 66, 20-35. DOI: https://doi.org/10.1016/j.tifs.2017.05.011
Barba, F. J., Parniakov, O., Pereira, S. A., Wiktor, A., Grimi, N., Boussetta, N., ... and Vorobiev, E. (2015). Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Research International, 77, 773-798. DOI: https://doi.org/10.1016/j.foodres.2015.09.015
Barbosa-Cánovas, G. V., and Altunakar, B. (2006). Pulsed electric fields processing of foods: an overview. In : Pulsed electric fields technology for the food industry, Raso, J. and Heinz, V. (eds,) . pp:3-26. DOI: https://doi.org/10.1007/978-0-387-31122-7_1
Bhargava, N., Mor, R. S., Kumar, K., and Sharanagat, V. S. (2021). Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry, 70, 105293. DOI: https://doi.org/10.1016/j.ultsonch.2020.105293
Bi, X., Liu, F., Rao, L., Li, J., Liu, B., Liao, X., and Wu, J. (2013). Effects of electric field strength and pulse rise time on physicochemical and sensory properties of apple juice by pulsed electric field. Innovative Food Science & Emerging Technologies, 17, 85-92. DOI: https://doi.org/10.1016/j.ifset.2012.10.008
Bilge, G., Yurdakul, M., Buzrul, S., and Bulut, O. (2022). Evaluation of the effect of pulsed electric field on coffee arabica beans. Food and Bioprocess Technology, 15(5), 1073-1081. DOI: https://doi.org/10.1007/s11947-022-02802-7
Breton, M. and Mir, L.M. (2018). Investigation of the chemical mechanisms involved in the electropulsation of membranes at the molecular level. Bioelectrochemistry, 119:76–83. DOI: https://doi.org/10.1016/j.bioelechem.2017.09.005
Buchmann, L. (2020). Emerging pulsed electric field process development for bio-based applications. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland.
Buchmann, L., Bloch, R., and Mathys, A. (2018). Comprehensive pulsed electric field (PEF) system analysis for microalgae processing. Bioresource Technology, 265, 268–274. DOI: https://doi.org/10.1016/j.biortech.2018.06.010
Buitimea-Cantúa, G. V., Rico-Alderete, I. A., Rostro-Alanís, M. D. J., Welti-Chanes, J., Escobedo-Avellaneda, Z. J., and Soto-Caballero, M. C. (2022). Effect of high hydrostatic pressure and pulsed electric fields processes on microbial safety and quality of black/red raspberry juice. Foods, 11(15), 2342. DOI: https://doi.org/10.3390/foods11152342
Carpentieri, S., Jambrak, A. R., Ferrari, G., and Pataro, G. (2021). Pulsed electric field-assisted extraction of aroma and bioactive compounds from aromatic plants and food by-products. Frontiers in Nutrition, 8. Cham, pp 1–20. DOI: https://doi.org/10.3389/fnut.2021.792203
Chiozzi, V., Agriopoulou, S., and Varzakas, T. (2022). Advances, applications, and comparison of thermal (pasteurization, sterilization, and aseptic packaging) against non-thermal (ultrasounds, UV radiation, ozonation, high hydrostatic pressure) technologies in food processing. Applied Sciences, 12(4),1-40. https://doi.org/10.3390/app12042202 DOI: https://doi.org/10.3390/app12042202
Dellarosa, N., Ragni, L., Laghi, L., Tylewicz, U., Rocculi, P., and Dalla Rosa, M. (2016). Time domain nuclear magnetic resonance to monitor mass transfer mechanisms in apple tissue promoted by osmotic dehydration combined with pulsed electric fields. Innovative Food Science & Emerging Technologies, 37, 345-351. DOI: https://doi.org/10.1016/j.ifset.2016.01.009
Delso, C., Martínez, J. M., Cebrián, G., Condón, S., Raso, J., and Álvarez, I. (2022). Microbial inactivation by pulsed electric fields. In: Pulsed Electric Fields Technology for the Food Industry (pp. 169-207). Springer, Cham. DOI: https://doi.org/10.1007/978-3-030-70586-2_5
Dermesonlouoglou, E., Zachariou, I., Andreou, V., and Taoukis, P. S. (2016). Effect of pulsed electric fields on mass transfer and quality of osmotically dehydrated kiwifruit. Food and Bioproducts Processing, 100, 535-544. DOI: https://doi.org/10.1016/j.fbp.2016.08.009
Duvoisin, C. A., Horst, D. J., Vieira, R. D. A., Baretta, D., Pscheidt, A., Secchi, M. A., ... and Lannes, S. C. D. S. (2022). Finite element simulation and practical tests on Pulsed Electric Field (PEF) for packaged food pasteurization: Inactivating E. coli, C. difficile, Salmonella spp. and mesophilic bacteria. Food Science and Technology, 42,1-20. DOI: https://doi.org/10.1590/fst.115421
Dziadek, K Kopeć, A., Drożdż, T., Kiełbasa, P., Ostafin, M., Bulski, K.,and Oziembłowski, M. (2019). Effect of pulsed electric field treatment on shelf life and nutritional value of apple juice. Journal of Food Science and Technology, 56(3),1184–1191. DOI: https://doi.org/10.1007/s13197-019-03581-4
Edebo, L., and Selin, I. (1968). The effect of the pressure shock wave and some electrical quantities in the microbicidal effect of transient electric arcs in aqueous systems. Journal of General Microbiology, 50, 253–259. DOI: https://doi.org/10.1099/00221287-50-2-253
Elez-Martínez, P.; Aguií O-Aguayo, I., and Martín-Belloso, O. (2006). Inactivation of orange juice peroxidase by high-intensity pulsed electric fields as influenced by process parameters. Journal Sciences Food Agriculture, 86, 71–81. DOI: https://doi.org/10.1002/jsfa.2306
Elgenedy, M. A., Darwish, A., Ahmed, S., and Williams, B. W. (2017). A transition arm modular multilevel universal pulse-waveform generator for electroporation applications. IEEE Transactions on Power Electronics, 32, 8979–8991. DOI: https://doi.org/10.1109/TPEL.2017.2653243
Ertugay, M. F., Başlar, M., and Ortakci, F. (2013). Effect of pulsed electric field treatment on polyphenol oxidase, total phenolic compounds, and microbial growth of apple juice. Turkish Journal of Agriculture and Forestry, 37(6), 772-780. DOI: https://doi.org/10.3906/tar-1211-17
Eshtiaghi, M. N., and Nakthong, N. (2021). Application of pulsed electric field for inactivation of Yeast S. cerevisiae in apple juice. Journal of Physics, Conference Series, 1893(1). 012008. DOI: https://doi.org/10.1088/1742-6596/1893/1/012008
Faisal Manzoor, M., Ahmed, Z., Ahmad, N., Karrar, E., Rehman, A., Muhammad Aadil, R., ... and Zeng, X. A. (2021). Probing the combined impact of pulsed electric field and ultra- sonication on the quality of spinach juice. Journal of Food Processing and Preservation, 45(5), e15475. DOI: https://doi.org/10.1111/jfpp.15475
Faridnia, F., Burritt, D. J., Bremer, P. J., and Oey, I. (2015). Innovative approach to determine the effect of pulsed electric fields on the microstructure of whole potato tubers: Use of cell viability, microscopic images and ionic leakage measurements. Food Research International, 77, 556-564. DOI: https://doi.org/10.1016/j.foodres.2015.08.028
Fauster, T., Schlossnikl, D., Rath, F., Ostermeier, R., Teufel, F., Toepfl, S., and Jaeger, H. (2018). Impact of pulsed electric field (PEF) pretreatment on process performance of industrial French fries production. Journal of Food Engineering, 235, 16-22. DOI: https://doi.org/10.1016/j.jfoodeng.2018.04.023
Fruengel, F. (1960). Method and device for electrically sterilizing and cleaning milking machines or the like. (Patent) ,US 2931947.
Gabrić, D., Barba, F., Roohinejad, S., Gharibzahedi, S. M. T., Radojčin, M., Putnik, P., and Bursać Kovačević, D. (2018). Pulsed electric fields as an alternative to thermal processing for preservation of nutritive and physicochemical properties of beverages: A review. Journal of Food Process Engineering, 41(1), 1-14. DOI: https://doi.org/10.1111/jfpe.12638
Gaskova, D.; Sigler, K.J.; Anderova, B. and Plasek, J. (1996). Effect of high voltage electric pulses on yeast cells: Factors influencing the killing efficiency. Bioelectrochemistry and Bioenergetics, 39: 195-202. DOI: https://doi.org/10.1016/0302-4598(95)01892-1
Genovese, J., Tappi, S., Luo, W., Tylewicz, U., Marzocchi, S., Marziali, S., ... and Rocculi, P. (2019). Important factors to consider for acrylamide mitigation in potato crisps using pulsed electric fields. Innovative food science & emerging technologies, 55, 18-26. DOI: https://doi.org/10.1016/j.ifset.2019.05.008
Giner, M. J., Hizarci, Õ., Martí, N., Saura, D., and Valero, M. (2013). Novel approaches to reduce brown pigment formation and color changes in thermal pasteurized tomato juice. European Food Research and Technology, 236(3), 507-515. DOI: https://doi.org/10.1007/s00217-012-1900-y
Godard, N. (2021). Setup of a continuous pulsed electric field system for microbial reduction in some liquid foods. American Journal of Applied Sciences, 11(02): (ISSN: 2321–089X).
Heinz, V., and Toepfl, S. (2022). Pulsed electric fields industrial equipment design. In: Pulsed electric fields technology for the food industry. Food Engineering Series. Raso, V. Heinz, I. Alvarez, and S. Toepfl (eds.). Cham: Springer. https://doi.org/10.1007/978-3-030-70586-2-17. DOI: https://doi.org/10.1007/978-3-030-70586-2_17
Hidayat, A., Wijaya, T., Ishak, A., Rejeki Ekasasi, S., and Zalzalah, G. G. (2021). Model of the consumer switching behavior related to healthy food products. Sustainability, 13(6), 3555. https://doi.org/10.3390/su13063555 DOI: https://doi.org/10.3390/su13063555
Iqbal, A., Murtaza, A., Hu, W., Ahmad, I., Ahmed, A., and Xu, X. (2019). Activation and inactivation mechanisms of polyphenol oxidase during thermal and non-thermal methods of food processing. Food and Bioproducts Processing, 117, 170-182. https://doi.org/10.1016/j.fbp.2019.07.006 DOI: https://doi.org/10.1016/j.fbp.2019.07.006
Jin, T. (2017). Pulsed electric fields for pasteurization: Defining processing conditions. Handbook of electroporation. Cham: Springer Publisher. DOI: https://doi.org/10.1007/978-3-319-32886-7_132
Kandušer, M., Belič, A., Čorović, S., and Škrjanc, I. (2017). Modular serial flow through device for pulsed electric field treatment of the liquid samples. Scientific Reports, 7(1), 1-12. DOI: https://doi.org/10.1038/s41598-017-08620-8
Kantala, C., Supasin, S., Intra, P., and Rattanadecho, P. (2022). Design and analysis of pulsed electric field processing for microbial inactivation (case study: Coconut juice). Sciences Technology Asia, 28(4),1-4.
Katiyo, W., Yang, R., Zhao, W., Hua, X., and Gasmalla, M. A. A. (2014). Optimization of combined pulsed electric fields and mild temperature processing conditions for red apple juice polyphenol oxidase and peroxidase inactivation. Advance Journal of Food Science and Technology, 6(5), 638-646. DOI: https://doi.org/10.19026/ajfst.6.88
Kotnik, T., Rems, L., Tarek, M., and Miklavčič, D. (2019). Membrane electroporation and electropermeabilization: Mechanisms and models. Annual Review of Biophysics, 48, 63-91. DOI: https://doi.org/10.1146/annurev-biophys-052118-115451
Kumar, R., Vijayalakshmi, S., Kathiravan, T., and Nadanasabapathi, S. (2019). PEF processing of fruits, vegetables, and their products. In: Non-thermal Processing of Foods. CRC Press. pp: 107-127. DOI: https://doi.org/10.1201/b22017-7
Lee, S.L., Bang, I.H., Choi, H.j. and Min, S.C. (2018) Pasteurization of mixed mandarin and Hallabong tangor juice using pulsed electric field processing combined with heat. Food Science and Biotechnology, 27(3), 669–675. DOI: https://doi.org/10.1007/s10068-018-0311-7
Li, X., and Farid, M. (2016). A review on recent development in nonconventional food sterilization technologies. Journal of Food Engineering, 182, 33–45. DOI: https://doi.org/10.1016/j.jfoodeng.2016.02.026
Li, L., Yang, R., and Zhao, W. (2021). The effect of Pulsed Electric Fields (PEF) combined with temperature and natural preservatives on the quality and microbiological shelf-life of cantaloupe juice. Foods, 10(11), 2606 DOI: https://doi.org/10.3390/foods10112606
Ling, B., Tang, J., Kong, F., Mitcham, E.J. and Wang, S. (2015). Kinetics of food quality changes during thermal processing: A review. Food Bioprocess Technology, 8(2), 343–358. DOI: https://doi.org/10.1007/s11947-014-1398-3
Liu, C., Grimi, N., Lebovka, N., and Vorobiev, E. (2018a). Effects of preliminary treatment by pulsed electric fields and convective air-drying on characteristics of fried potato. Innovative Food Science & Emerging Technologies, 47, 454-460. DOI: https://doi.org/10.1016/j.ifset.2018.04.011
Liu, Z. W., Zeng, X. A., and Ngadi, M. (2018b). Enhanced extraction of phenolic compounds from onion by pulsed electric field (PEF). Journal of Food Processing and Preservation, 42(9), e13755. DOI: https://doi.org/10.1111/jfpp.13755
Lohani, U. C., and Muthukumarappan, K. (2016). Application of the pulsed electric field to release bound phenolics in sorghum flour and apple pomace. Innovative Food Science & Emerging Technologies, 35, 29-35. DOI: https://doi.org/10.1016/j.ifset.2016.03.012
Luo, W., Zhang, R. B., Wang, L. M., Chen, J., and Guan, Z. C. (2010). Conformation changes of polyphenol oxidase and lipoxygenase induced by PEF treatment. Journal of Applied Electrochemistry, 40(2), 295-301. DOI: https://doi.org/10.1007/s10800-009-9973-4
Marsellés-Fontanet, Á. R., and Martin-Belloso, O. (2007). Optimization and validation of PEF processing conditions to inactivate oxidative enzymes of grape juice. Journal of food engineering, 83(3), 452-462. DOI: https://doi.org/10.1016/j.jfoodeng.2007.04.001
Martin-Belloso, O. and Elez-Martinez, P. (2005b) Food safety aspects of pulsed electric field. In: Emerging technologies for food processing. Da-Wen, S. (ed.). Elsevier Academic Press, London pp:184-217. DOI: https://doi.org/10.1016/B978-012676757-5/50010-4
Martinho, V. J., Bartkiene, E., Djekic, I., Tarcea, M., Barić, I. C., Černelič-Bizjak, M., and Guiné, R. P. (2022). Determinants of economic motivations for food choice: Insights for the understanding of consumer behaviour. International Journal of Food Sciences and Nutrition, 73(1), 127-139. https://doi.org/10.1080/09637486.2021.1939659 DOI: https://doi.org/10.1080/09637486.2021.1939659
Min, S., Min, S. K., and Zhang, Q. H. (2003). Inactivation kinetics of tomato juice lipoxygenase by pulsed electric fields. Journal of Food Science, 68(6), 1995-2001. DOI: https://doi.org/10.1111/j.1365-2621.2003.tb07008.x
Mohamad, A., Abdul Karim Shah, N. N., Sulaiman, A., Mohd Adzahan, N., and Aadil, R. M. (2021). Pulsed electric field of goat milk: Impact on Escherichia coli ATCC 8739 and vitamin constituents. Journal of Food Process Engineering, 44(9), e13779. DOI: https://doi.org/10.1111/jfpe.13779
Morales-de la Peña, M., Rábago-Panduro, L. M., Soliva-Fortuny, R., Martín-Belloso, O., and Welti-Chanes, J. (2021). Pulsed electric fields technology for healthy food products. Food Engineering Reviews, 13(3), 509-523. DOI: https://doi.org/10.1007/s12393-020-09277-2
Mtaoua, H., Sanchez-Vega, R., Ferchichi, A., and Martin-Belloso , O. (2017) Impact of high-intensity pulsed electric fields or thermal treatment on the quality attributes of date juice. Journal of Food Processing and Preservation,47: e13052. DOI: https://doi.org/10.1111/jfpp.13052
Naliyadhara, N., Kumar, A., Girisa, S., Daimary, U. D., Hegde, M., and Kunnumakkara, A. B. (2022). Pulsed electric field (PEF): Avant-garde extraction escalation technology in food industry. Trends in Food Science & Technology,122, 238–255. DOI: https://doi.org/10.1016/j.tifs.2022.02.019
Navarro, A., Ruiz-Méndez, M. V., Sanz, C., Martínez, M., Rego, D., and Pérez, A. G. (2022). Application of pulsed electric fields to pilot and industrial scale virgin olive oil extraction: impact on organoleptic and functional quality. Foods, 11(14),1-15. DOI: https://doi.org/10.3390/foods11142022
Niu, D., Ren, E. F., Li, J., Zeng, X. A., and Li, S. L. (2021). Effects of pulsed electric field-assisted treatment on the extraction, antioxidant activity and structure of naringin. Separation and Purification Technology, 265, 118480. DOI: https://doi.org/10.1016/j.seppur.2021.118480
Noci, F.; Riener, J.; Walkling-Ribeiro, M.; Cronin, D.A.; Morgan, D.J. and Lyng, J.G. (2008). Ultraviolet irradiation and pulsed electric fields (PEF) in a hurdle strategy for the preservation of fresh apple juice. Journal Food Engineering, 85, 141–146. DOI: https://doi.org/10.1016/j.jfoodeng.2007.07.011
Nowosad, K., Sujka, M., Pankiewicz, U. and Kowalski, R. (2021). The application of PEF technology in food processing and human nutrition. Journal of Food Science and Technology, 58(2), 397-411. DOI: https://doi.org/10.1007/s13197-020-04512-4
Odriozola-Serrano, I., Bellí, G., Puigpinós, J., Herrero, E., and Martín-Belloso, O. (2022). Screening the antioxidant activity of thermal or non-thermally treated fruit juices by in vitro and in vivo assays. Beverages, 8(2), 36. DOI: https://doi.org/10.3390/beverages8020036
Oey, I., Roohinejad ,S., Leong, S.Y., Faridnia, F., Lee, P.Y. and Kethireddy, V. (2016). Pulsed electric field processing: Its technological opportunities and consumer perception. In: Food processing technologies. Jaiswal, A.K. (ed). CRC Press, Boca Raton, pp: 447–451. DOI: https://doi.org/10.1201/9781315372365-18
Ozkan, G., Kostka, T., Dräger, G., Capanoglu, E., and Esatbeyoglu, T. (2022). Bioaccessibility and transepithelial transportation of cranberrybush (Viburnum opulus) phenolics: Effects of non-thermal processing and food matrix. Food Chemistry, 380, 132036. DOI: https://doi.org/10.1016/j.foodchem.2021.132036
Palaniappan, S., Sastry, S. K., and Richter, E. R. (1990). Effects of electricity on microorganisms - A review. Journal of Food Processing and Preservation, 14, 393–414. DOI: https://doi.org/10.1111/j.1745-4549.1990.tb00142.x
Parniakov, O., Barba, F. J., Grimi, N., Lebovka, N., and Vorobiev, E. (2016). Extraction assisted by pulsed electric energy as a potential tool for green and sustainable recovery of nutritionally valuable compounds from mango peels. Food Chemistry,192, 842–848. DOI: https://doi.org/10.1016/j.foodchem.2015.07.096
Pashazadeh, B., Elhamirad, A. H., Hajnajari, H., Sharayei, P., and Armin, M. (2020). Optimization of the pulsed electric field-assisted extraction of functional compounds from cinnamon. Biocatalysis and Agricultural Biotechnology, 23, 101461. DOI: https://doi.org/10.1016/j.bcab.2019.101461
Pataro, G., Falcone, M., Donsı,` G., and Ferrari, G. (2014). Metal release from stainless steel electrodes of a PEF treatment chamber: Effects of electrical parameters and food composition. Innovative Food Science & Emerging Technologies,1:58–65. DOI: https://doi.org/10.1016/j.ifset.2013.10.005
Pebrianti, E., and Vazirani, W. (2021). Use of pulsed electric field for the inactivation of Eupenicillium javanicum ascospores in pineapple juice. Journal of Physics: Conference Series, 2049(1), 012020. DOI: https://doi.org/10.1088/1742-6596/2049/1/012020
Peiro, S., Luengo, E., Segovia, F., Raso, J., and Almajano, M. P. (2019). Improving polyphenol extraction from lemon residues by pulsed electric fields. Waste and Biomass Valorization, 10, 889–897. DOI: https://doi.org/10.1007/s12649-017-0116-6
Poojary, M.M., Roohinejad, S., Koubaa,M., Barba, F.J., Passamonti, P., Jambrak, A.R, and Greiner, R. (2017). Impact of pulsed electric fields on enzymes, In: Handbook of Electroporation, MiklavˇciˇC. D. (ed.) ,Springer, Cham, Switzerland, pp: 2369–2998. DOI: https://doi.org/10.1007/978-3-319-32886-7_173
Qin, B.L.; Pothakamury, U.R.; Vega-Mercado, H.; Martin, O.; Barbosa-Canovas, G.V. and Swanson, B.G. (1995). Food pasteurisation using high-intensity pulsed electric fields. Food Technology, 49(12), 55-60.
Qin, B. L., Pothakamury, U. R., Barbosa-Cánovas, G. V., Swanson, B. G., and Peleg, M. (1996). Nonthermal pasteurization of liquid foods using high-intensity pulsed electric fields. Critical Reviews in Food Science & Nutrition, 36(6), 603-627. DOI: https://doi.org/10.1080/10408399609527741
Ravishankar, S., Zhang, H. and Kempkes, M.L. (2008). Pulsed electric fields. Food Science and Technology International, 14, 429–432. DOI: https://doi.org/10.1177/1082013208100535
Riener, J., Noci, F., Cronin, D. A., Morgan, D. J., and Lyng, J. G. (2008). Combined effect of temperature and pulsed electric fields on apple juice peroxidase and polyphenoloxidase inactivation. Food Chemistry, 109(2), 402-407. DOI: https://doi.org/10.1016/j.foodchem.2007.12.059
Rios-Corripio, G., Morales-de la Peña, M., Welti-Chanes, J., and Guerrero-Beltrán, J. Á. (2022). Pulsed electric field processing of a pomegranate (Punica granatum L.) fermented beverage. Innovative Food Science & Emerging Technologies, 103045. DOI: https://doi.org/10.1016/j.ifset.2022.103045
Rodríguez-Solana, R., Pereira-Caro, G., and Moreno-Rojas, J. M. (2022). Phenolic profiling and antioxidant capacity in agrifood products. Processes, 10(10), 1950. DOI: https://doi.org/10.3390/pr10101950
Roobab, U., Abida, A., Chacha, J. S., Athar, A., Madni, G. M., Ranjha, M. M. A. N., ... and Trif, M. (2022). Applications of innovative non-thermal pulsed electric field technology in developing safer and healthier fruit juices. Molecules, 27(13), 4031. DOI: https://doi.org/10.3390/molecules27134031
Salehi, F. (2020). Physico-chemical properties of fruit and vegetable juices as affected by pulsed electric field: A Review. International Journal of Food Properties, 23, 1036–1050. DOI: https://doi.org/10.1080/10942912.2020.1775250
Salinas-Roca, B., Elez-Martínez, P., Welti-Chanes, J., and Martín-Belloso, O. (2017). Quality changes in mango juice treated by high-intensity pulsed electric fields throughout the storage. Food and Bioprocess Technology, 10(11), 1970-1983. DOI: https://doi.org/10.1007/s11947-017-1969-1
Sanchez-Vega, R., Elez-Martinez, P. and Martin-Belloso, O. (2014). Effects of high-intensity pulsed electric fields processing parameters on the chlorophyll content and its degradation compounds in broccoli juice. Food Bioprocess Technology, 7, 1137–1148. DOI: https://doi.org/10.1007/s11947-013-1152-2
Sánchez-Vega, R., Elez-Martínez, P., and Martín-Belloso, O. (2015). Influence of high-intensity pulsed electric field processing parameters on antioxidant compounds of broccoli juice. Innovative Food Science & Emerging Technologies, 29, 70-77. DOI: https://doi.org/10.1016/j.ifset.2014.12.002
Sánchez-Vega, R., Rodríguez-Roque, M. J., Elez-Martínez, P., and Martín-Belloso, O. (2020). Impact of critical high-intensity pulsed electric field processing parameters on oxidative enzymes and color of broccoli juice. Journal of Food Processing and Preservation, 44(3), e14362. DOI: https://doi.org/10.1111/jfpp.14362
Schilling, S., Schmid, S., Jäger, H., Ludwig, M., Dietrich, H., Toepfl, S., and Carle, R. (2008). Comparative study of pulsed electric field and thermal processing of apple juice with particular consideration of juice quality and enzyme deactivation. Journal of Agricultural and Food Chemistry, 56(12), 4545-4554. DOI: https://doi.org/10.1021/jf0732713
Siddiqui, A., and Chand, K. (2022). Non-thermal processing of food: an alternative for traditional food processing. Innovative Approaches for Sustainable Development. Springer, Cham. pp:19-131. https://doi.org/10.1007/978-3-030-90549-1_7 DOI: https://doi.org/10.1007/978-3-030-90549-1_7
Sitzmann, W., Vorobiev, E.,and Lebovka, N. (2016a). Pulsed electric fields for food industry: Historical overview. In: Handbook of electroporation. Miklavcic, D. (ed). Springer International Publishing, DOI: https://doi.org/10.1007/978-3-319-26779-1_194-1
Sitzmann, W., Vorobiev, E., and Lebovka, N. (2016b). Applications of electricity and specifically pulsed electric fields in food processing: Historical backgrounds. Innovative Food Science and Emerging, 37C, 302–311. DOI: https://doi.org/10.1016/j.ifset.2016.09.021
Sitzmann, W., Vorobiev, E., Raso, J., Álvarez, I., and Lebovka, N. (2022). History of Pulsed Electric Fields in Food Processing. In : Pulsed Electric Fields Technology for the Food Industry, Raso, J. ;Volker Heinz, V. Alvarez, L. and Toepfl, S. (eds.).. Springer, Cham. https://doi.org/10.1007/978-3-030-70586-2_1. pp: 3-54 DOI: https://doi.org/10.1007/978-3-030-70586-2_1
Soliva-Fortuny, R., Balasa, A., Knorr, D., and Martín-Belloso, O. (2009). Effects of pulsed electric fields on bioactive compounds in foods: A review. Trends in Food Science & Technology, 20(11-12), 544-556. DOI: https://doi.org/10.1016/j.tifs.2009.07.003
Soliva-Fortuny R, Vendrell-Pacheco M, Martin-Belloso O, Elez– Martinez P (2017). Effect of pulsed electric fields on the antioxidant potential of apples stored at different temperatures. Postharvest Biology and Technology, 132:195–201. DOI: https://doi.org/10.1016/j.postharvbio.2017.03.015
Sulaiman, A., Farid, M., and Silva, F. V. (2017). Quality stability and sensory attributes of apple juice processed by thermosonication, pulsed electric field and thermal processing. Food Science and Technology International, 23(3), 265-276. DOI: https://doi.org/10.1177/1082013216685484
Supasin, S., Kantala, C., Intra, P., and Rattanadecho, P. (2022). postharvest preservation of thai mango var. chok-anan by the combination of pulsed electric field and chemical pickling. Horticulturae, 8(7), 584. DOI: https://doi.org/10.3390/horticulturae8070584
Taha, A., Casanova, F., Šimonis, P., Stankevič, V., Gomaa, M. A., and Stirkė, A. (2022). Pulsed electric field: fundamentals and effects on the structural and techno-functional properties of dairy and plant proteins. Foods, 11(11), 1556. DOI: https://doi.org/10.3390/foods11111556
Tian, Y., Wang, S., Yan, W., Tang, Y., Yang, R., and Zhao, W. (2018). Inactivation of apple (Malus domestica Borkh) polyphenol oxidases by radio frequency combined with pulsed electric field treatment. International Journal of Food Science & Technology, 53(9), 2054-2063. DOI: https://doi.org/10.1111/ijfs.13781
Toepfl, S., Heinz, V., and Knorr, D. (2007). High intensity pulsed electric fields applied for food preservation. Chemical Engineering and Processing:Process Intensification, 46(6), 537-546. DOI: https://doi.org/10.1016/j.cep.2006.07.011
Tsong, T.Y. (1990). Reviews on electroporation of cell membranes and some related phenomena. Bioelectrochemistry and Bioenergetics, 24(3), 271-295. DOI: https://doi.org/10.1016/0302-4598(90)80028-H
Vervoort, L., Van der Plancken, I., Grauwet, T., Timmermans, R. A., Mastwijk, H. C., Matser, A. M., and Van Loey, A. (2011). Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice: Part II: Impact on specific chemical and biochemical quality parameters. Innovative Food Science & Emerging Technologies, 12(4), 466-477. DOI: https://doi.org/10.1016/j.ifset.2011.06.003
Vinceković, M., Viskić, M., Jurić, S., Giacometti, J., Kovačević, D. B., Putnik, P., and Jambrak, A. R. (2017). Innovative technologies for encapsulation of Mediterranean plants extracts. Trends in Food Science & Technology, 69, 1-12. DOI: https://doi.org/10.1016/j.tifs.2017.08.001
Visockis, M., Bobinaitė, R., Ruzgys, P., Barakauskas, J., Markevičius, V., Viškelis, P., and Šatkauskas, S. (2021). Assessment of plant tissue disintegration degree and its related implications in the pulsed electric field (PEF)–assisted aqueous extraction of betalains from the fresh red beetroot. Innovative Food Science & Emerging Technologies, 73, 102761. DOI: https://doi.org/10.1016/j.ifset.2021.102761
Wang, Q., Li, Y., Sun, D. W. and Zhu, Z. (2018). Enhancing food processing by pulsed and high voltage electric fields: principles and applications. Critical Reviews in Food Science and Nutrition, 58(13), 2285-2298. DOI: https://doi.org/10.1080/10408398.2018.1434609
Wang, M.-S., Wang, L.-H., Bekhit, A. E.-D. A., Yang, J., Hou, Z.-P., Wang, Y.-Z., … Zeng, X.-A. (2018). A review of sublethal effects of pulsed electric field on cells in food processing. Journal of Food Engineering, 223, 32–41.. DOI: https://doi.org/10.1016/j.jfoodeng.2017.11.035
Wibowo, S., Essel, E. A., De Man, S., Bernaert, N., Van Droogenbroeck, B., Grauwet, T., ... and Hendrickx, M. (2019). Comparing the impact of high pressure, pulsed electric field and thermal pasteurization on quality attributes of cloudy apple juice using targeted and untargeted analyses. Innovative food science & emerging technologies, 54, 64-77. DOI: https://doi.org/10.1016/j.ifset.2019.03.004
Wiktor, A., Sledz, M., Nowacka, M., Rybak, K., Chudoba, T., Lojkowski, W., and Witrowa-Rajchert, D. (2015). The impact of pulsed electric field treatment on selected bioactive compound content and color of plant tissue. Innovative Food Science & Emerging Technologies, 30, 69-78. DOI: https://doi.org/10.1016/j.ifset.2015.04.004
Wu, S., Xu, X., Yang, N., Jin, Y., Jin, Z., and Xie, Z. (2022). Inactivation of Escherichia coli O157: H7 in apple juice via induced electric field (IEF) and its bactericidal mechanism. Food Microbiology, 102, 103928. DOI: https://doi.org/10.1016/j.fm.2021.103928
Yang, S., Yuan, Z., Aweya, J. J., Huang, S., Deng, S., Shi, L., ... and Liu, G. (2021). Low-intensity ultrasound enhances the antimicrobial activity of neutral peptide TGH2 against Escherichia coli. Ultrasonics Sonochemistry, 77, 105676. DOI: https://doi.org/10.1016/j.ultsonch.2021.105676
Yildiz, S., Pokhrel, P. R., Unluturk, S., and Barbosa-Cánovas, G. V. (2019). Identification of equivalent processing conditions for pasteurization of strawberry juice by high pressure, ultrasound, and pulsed electric fields processing. Innovative Food Science & Emerging Technologies, 57, 102195. https://doi.org/10.1016/j.ifset.2019.102195. DOI: https://doi.org/10.1016/j.ifset.2019.102195
Yildiz, S., Pokhrel, P. R., Unluturk, S., and Barbosa-Cánovas, G. V. (2021). Shelf life extension of strawberry juice by equivalent ultrasound, high pressure, and pulsed electric fields processes. Food Research International, 140, 110040. DOI: https://doi.org/10.1016/j.foodres.2020.110040
Zhao, W., Yang, R., and Zhang, H. Q. (2012). Recent advances in the action of pulsed electric fields on enzymes and food component proteins. Trends in Food Science & Technology, 27(2), 83-96. DOI: https://doi.org/10.1016/j.tifs.2012.05.007
Zhang, Q., Barbosa-Cánovas, G. V., and Swanson, B. G. (1995). Engineering aspects of pulsed electric field pasteurization. Journal of food engineering, 25(2), 261-281. DOI: https://doi.org/10.1016/0260-8774(94)00030-D
Zhang, R., Li, X., Wang, Z., Chen, Z., and Du, G. (2018). Prediction of the electric discharge occurrence under repetitive bipolar rectangular pulsed electric field< 20 kV/cm. Applied Physics Letters, 113(6), 063701. DOI: https://doi.org/10.1063/1.5043135
Zhong, K., Wu, J., Wang, Z., Chen, F., Liao, X., Hu, X., and Zhang, Z. (2007). Inactivation kinetics and secondary structural change of PEF-treated POD and PPO. Food Chemistry, 100(1), 115-123. DOI: https://doi.org/10.1016/j.foodchem.2005.09.035
Zhang, J., Portela, S. B., Horrell, J. B., Leung, A., Weitmann, D. R., Artiuch, J. B., and Yates, S. N. (2019). An integrated, accurate, rapid, and economical handheld consumer gluten detector. Food Chemistry, 275, 446-456. DOI: https://doi.org/10.1016/j.foodchem.2018.08.117
Zimmermann, U. (1986). Electrical breakdown, electropermeabilization and electrofusion. Reviews of Physiology. Biochemistry and Pharmacology ,105:175-256. DOI: https://doi.org/10.1007/BFb0034499
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2023 مجلة علوم البحار والتقنيات البيئية
هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.