Ozone Concentrations in Tripoli City Atmosphere, Libya

Authors

  • Alhadi A. Abogrean Biotechnology Research Center, Authority of Natural Science and Technology, Tripoli city, Libya
  • Mohamed A. Elssaidi Department of Environmental Science, Faculty of Engineering and Technology, Sebha University, Brack city, Libya.
  • Abdulsalam M. Almathnani Department of Environmental Science, Faculty of Engineering and Technology, Sebha University, Brack city, Libya.
  • Mokhtar H. Alansari Department of Environmental Science, Faculty of Engineering and Technology, Sebha University, Brack city, Libya.

DOI:

https://doi.org/10.59743/jmset.v3i2.94

Keywords:

Air pollution, Ozone, Tripoli, Libya

Abstract

This study was conducted to assess the state of air pollution in the atmosphere of Tripoli city, which is the largest Libyan city in terms of urban structure and population, Tripoli also has a concentrated bulk of commercial activity, economic, industrial, tourism, and cultural activities in Libya. This study aimed to monitor the concentration of ozone in the city center and its relation to climate variables. The average annual concentration of ozone in the center of Tripoli was 79 μg/m3. The mean average seasons were lowest in winter and spring (36, 34 μg/m3), while the maximum concentrations were in the summer and autumn (106, 105 μg/m3) respectively. All of the average concentrations during the hour of the day did not exceed the maximum allowed by Environment General Authority-Libya (200 μg/m3). The highest monthly concentrations recorded were in August and September, reaching 127 μg/m3, while the lowest value was recorded in January, where it was 20 μg/m3. There was also an observed increase in the concentration of ozone gas due to an increase in solar radiation which automatically decreased during the night, the peak of its activity was at three o'clock in the afternoon and the reason for the increase in the concentration of averages is due to high temperature and increase in the number of hours of solar brightness, where the results proved a positive relationship (P = 0.68) between the temperature and concentration of ozone and the presence of Mean inverse relationship (P=-0.573) between wind velocity and concentration of ozone gas. As the wind speed increases, the movement of air pollutants increases and becomes more widespread.

References

قائمة المراجع باللغة العربية

تقرير الإحصاءات البيئية لسنة 2013 في دولة قطر.

تقرير المركز الوطني للإحصاء نوعية الهواء 2011 في دولة الامارات العربية المتحدة.

تقرير المركز الوطني للإحصاء نوعية الهواء 2013 في دولة الامارات العربية المتحدة.

تقرير المركز الوطني للإحصاء نوعية الهواء 2014 في دولة الامارات العربية المتحدة.

حيدر، عبدالرزاق كمونه (1987). العوامل الطبيعية وتلوث البيئة. مجلة النفط والتنمية، دار الشؤون الثقافية العامة، بغداد، تشرين الثاني-كانون الأول، 6: 8-30.

الصطوف، عبد الاله (1995). تلوث البيئة. منشورات جامعة سبها. سبها، ليبيا.

الطويل، محمد نبيل (1999). البيئة وتلوث: محليا وعالميا. الطبعة الاولى، دار النفائس للطباعة والنشر والتوزيع، بيروت، لبنان.

النشرة السنوية لإحصاءات البيئية لسنة 2012 لدولة الكويت.

الهيئة العامة للبيئة (2010). تقرير وحدة رصد ملوثات الهواء عن مستوى تلوث الهواء بمدينة طرابلس (ميدان الشهداء) في الفترة من 21/7 إلي 27/7/2010.

قائمة المراجع باللغة الإنجليزية

Boston M.A. (2004). Health Effects of Outdoor Air Pollution in Developing Countries, A Literature Review. Health Effects Institute (HEI), USA, pp. 1-69.

WHO (1999). Health Costs due to Road Traffic Related Air Pollution. Available online at [http://www.who.dk/London 99].

WHO (2002). The World Health Report 2002: Reduction Risk, Promoting Healthy Life. Geneva, Switzerland.

WHO (2011). Health Costs due to Road Traffic Related Air Pollution.

Published

2017-12-31

How to Cite

Abogrean, A. A., Elssaidi, M. A., Almathnani, A. M., & Alansari, M. H. (2017). Ozone Concentrations in Tripoli City Atmosphere, Libya. Journal of Marine Sciences and Environmental Technologies, 3(2), A 1–11. https://doi.org/10.59743/jmset.v3i2.94

Issue

Section

المقالات