Benefits and Limitations of Rhizobium-Legume Symbiosis and Nitrogen Fixation Under Libyan Saline Soil: Mini Review

Authors

  • Mustafa E. Elsharif Department of Microbiology, Faculty of Science, Alasmarya Islamic University, Zliten, Libya.

DOI:

https://doi.org/10.59743/jmset.v5i2.57

Keywords:

Legume plants, N-fixation bacteria, Salt tolerances, Libyan soil

Abstract

Biological Nitrogen Fixation (BNF) donates to productivity both straight by increasing the production of legumes and indirectly by improving soil fertility. BNF is the cheapest and most environment-friendly procedure in which nitrogen-fixing bacteria (Rhizobia), interact with leguminous plants. Rhizobium is the most well-known species of the rhizobial group that acts as the primary symbiotic fixer of nitrogen, increased farming of legumes is important for the renewal of nutrient-deficient soils and providing required nutrients which important as food for human beings and animals. Some environmental factors such as salinity, which is become one of the severe difficulties in worldwide farming production. Where soil salinity limits the production of both feed and grain legumes.

References

Abagandura G.O., and Park D. (2016). Libyan Agriculture: A Review of Past Efforts, Current Challenges and Future Prospects. Journal of Natural Sciences Research, 6(18): 57-67.

Abdelmoumen H., Filali-Maltouf A., Neyra M., Belabed A., and El Idrissi M. (1999). Effect of high salts concentrations on the growth of rhizobia and responses to added osmotica. Journal of Applied Microbiology, 86: 889–898.

Abdelnaby M., Elnesairy N.N., Mohamed S.H., and Alkhayali Y.A. (2015). Symbiotic and Phenotypic Characteristics of Rhizobia Nodulaing Cowpea (Vigna Unguiculata L. Walp) Grown in Arid Region of Libya (Fezzan). Journal of Environmental Science and Engineering B, 44: 227-239.

Allito B.B., Ewusi-Mensah N., and Alemneh A.A. (2014). Rhizobia Strain and Host-Legume Interaction Effects on Nitrogen Fixation and Yield of Grain Legume: A Review. Molecular Soil Biology, 6(4): 1-12.

Bagal Y.S., Sharma L.K., Kaur G.P., Singh A., and Gupta P. (2018). Trends and Patterns in Fertilizer Consumption: A Case Study. International Journal of Current Microbiology and Applied Sciences, 7(4): 480-487.

Bala N., Sharma P.K., and Lakshminarayana K. (1990). Nodulation and nitrogen fixation by salinity tolerant rhizobia in symbiosis with tree legumes. Agriculture, Ecosystems and Environment, 33: 33-46.

Bartels D., and Sunkar R. (2005). Drought and salt tolerance in plants. Crit Rev Plant Sci., 24(1): 23–58.

Belal E.B., Hassan, M.M., and El-Ramady H.R. (2013). Phylogenetic and characterization of salt-tolerant rhizobial strain nodulating faba bean plants. African Journal of Biotechnology, 12(27): 4324-4337.

Ben Romdhane S., Aouani M.S., Trabelsi M., De Lajudie P., and Mhamdi R. (2008). Selection of High Nitrogen‐Fixing Rhizobia Nodulating Chickpea (Cicer arietinum) for Semi‐Arid Tunisia. Journal of Agronomy and Crop Science, 194(6): 413-420.

Bouksila F. (2011). Sustainability of irrigated agriculture under salinity pressure - A study in semiarid Tunisia, Lund: Water Resources Engineering, Lund University, Media-Tryck, Lund, Sweden.

Brockwell J., Bottomley P.J., and Thies J.E. (1995). Manipulation of rhizobia microflora for improving legume productivity and soil fertility: a critical assessment. Plant Soil., 174(1-2): 143–180.

Chinnusamy V., and Zhu J.K. (2004). Plant salt tolerance. In: Plant responses to abiotic stess. Berlin Heidelberg: Springer, Berlin.Germany.

Cordovilla M.P., Ligero F., and Lluch C. (1999). Effect of salinity on growth, nodulation and nitrogen assimilation in nodules of faba bean (Vicia faba L). Applied Soil Ecology, 11(1): 1-7.

Datta A., Singh R.K., and Tabassum S. (2015). Isolation, Characterization and Growth of Rhizobium Strains under Optimum Conditions for Effective Biofertilizer Production. Int. J. Pharm. Sci. Rev. Res., 32(1):199-208.

de la Peña T.C., and Pueyo J.J. (2012). Legumes in the reclamation of marginal soils, from cultivar and inoculant selection to transgenic approaches. Agron. Sustain. Dev., 32: 65–91.

Dong R., Zhang J., Huan H., Bai C., Chen Z., and Liu G. (2017). High Salt Tolerance of a Bradyrhizobium Strain and Its Promotion of the Growth of Stylosanthes guianensis. International Journal of Molecular Sciences, 18(8): 1625-1642.

Douka C., Apostolakis C., and Skarloy V. (2008). Studies of Rhizobium meliloti isolated from salt-Affected soils. Annals of Applied Biology, 88(3): 457–460.

El-Asswad R.M. (1995). Agriculture Prospects and Water Resources in Libya. Ambio., 24: 324-327.

El-Mokadem M.T., Helemish F.A., Abdel-Wahab S.M., and Abou-El-Nour M.M.. (1991). Salt response of clover and alfalfa inoculated with salt tolerant strains of Rhizobium. Ain Shams Sci. Bull., 28(B): 441–468.

Elsheikh E. (1998). Response of Legume-Rhizobium Symbiosis to Salinity in the Sudan: a Review. Agric. Sci., 6(2): 142-156.

Heffer P., and Prud’homme M. (2016). Global nitrogen fertilizer demand and supply: trend, current level and outlook. Proceedings of International Nitrogen Initiative Conference, "Solutions to improve nitrogen use efficiency for the world", 4–8 December, Melbourne, Australia.

Indge B. (2000). The Nitrogen Cycle. Biological Sciences Review, 13: 25-27.

Jordan D.C. (1982). Transfer of Rhizobium japonicum to Bradyrhizobium a genus of slow growing, root nodule bacteria from leguminous Plants. International Journal of systemic Bacteriology. 32: 136-139.

Keneni A., Assefa F., and Prabu P.C. (2010). Characterization of Acid and Salt Tolerant Rhizobial Strains Isolated from Faba Bean Fields of Wollo, Northern Ethiopia. J. Agr. Sci. Tech., 12: 365-376.

Lioi L., and Giovannetti M. (1987). Variable effectivity of three vesicular-arbuscular mycorrhizal endophytes in Hedysarum coronarium and Medicago sativa. Biol Fertil Soils, 4: 193-197.

Lloret J., Bolanos L., Lucas M., Peart J.M., Brewin J.M., Bonilla. L., and Rivilla R. (2015). Microbiology Ionic Stress and Osmotic Pressure Induce Different Alterations in the Lipopolysaccharide of a Rhizobium meliloti strain. Applied and Environmental Microbiology, 61(10): 3701–3704.

Machado R.M.A., and Serralheiro R.P. (2017). Review Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae, 3(30): 1-13.

Mahdhi M., Houidheg N., Mahmoudi N., Msaadek A.A., Rejili M., and Mars M. (2016). Characterization of Rhizobial Bacteria Nodulating Astragalus corrugatus and Hippocrepis areolata in Tunisian Arid Soils. Polish Journal of Microbiology, 65(3): 331–339.

Mandal H.K. (2014). Isolation of Salt Tolerant Strains of Rhizobium Trifolii. International Journal of Agriculture and Food Science Technology, 5(4): 325-332.

Moghaddam M., Sabzevar A., Zolfaghari M., and Lakzian A. (2018). Phenotypic and molecular characterization of Sinorhizobium meliloti strains isolated from the roots of Medicago sativa in Iran. Biological Journal of Microorganism, 6(24): 29-39.

Mohammad R.M., Akhavan-Kharazian M., Campbell W.F., and Rumbaugh M.D. (1991). Identification of salt and drought tolerant Rhizobium meliloti L. strains. Plant Soil, 134: 271–276.

Mnasri B., Mrabet M., Laguerre G., Aouani M.E., and Mhamd R. (2007). Salt-tolerant rhizobia isolated from a Tunisian oasis that are highly effective for symbiotic N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. mediterranense) of Sinorhizobium meliloti. Archives of Microbiology, 187(1): 79–85.

Mohamed S.H., Smouni A., Neyra M., Kharchaf D., and Filali-Maltouf A. (2000). Phenotypic characteristics of root-nodulating bacteria isolated from Acacia spp. grown in Libya. Plant and Soil. 224 (2): 171–183.

Monica N., Vidican R., Pop R., and Rotar I. (2013). Stress Factors Affecting Symbiosis Activity and Nitrogen Fixation by Rhizobium Cultured in vitro. ProEnvironment, 6: 42-45.

Monica N., Vidican R., Ioan Rotar I., Stolan V., Rodica R., and Miclea R. (2014). Plant Nutrition Affected by Soil Salinity and Response of Rhizobium Regarding the Nutrients Accumulation. ProEnvironment, 7: 71-75.

Mora Y., Rafael R., Vargas-Lagunas C., Peralta H., Guerrero G., Aguilar A., Encarnación S., Girard L., and Mora J. (2014). Nitrogen-Fixing Rhizobial Strains Isolated from Common Bean Seeds: Phylogeny, Physiology, and Genome Analysis. Applied and Environmental Microbiology, 80(18): 5644–5654.

Moussaid S., Domínguez-Ferreras A., Muñoz S., Aurag J., and Sanjuán J. (2015). Increased trehalose biosynthesis improves Mesorhizobium ciceri growth and symbiosis establishment in saline conditions. Symbiosis., 67: 103–111.

Mpepereki S., Javeheri F., Davis P., Giller K.E., and Vance C.P. (2000). Soybean and Sustainable agriculture. Promiscuous soybeans in Southern Africa. Fields Crop Research, 65: 137-149.

Nwoko H., and Sanginga N. (1999). Dependence of promiscuous soybeans and herbaceous legumes on the arbuscular myhcorrhiza fungi and their response to Bradyrhizobium inoculation in low P soils. Applied Soil Ecology, 13: 131-143.

Turkan I., and Demiral T. (2009). Recent developments in understanding salinity tolerance. Environ. Exp. Bot., 67: 2–6.

Ogutcu H., Algur O.F., Elkoca E., and Kantar F. (2008). The Determination of Symbiotic Effectiveness of Rhizobium Strains Isolated from Wild Chickpeas Collected from High Altitudes in Erzurum. Turkish Journal of Agriculture and Forestry, 32: 241-248.

Olunike A. (2014). Utilization of Legumes in the Tropics. Journal of Biology, Agriculture and Healthcare, 4(12): 77-84.

Patil S.M., Patil D.B., Patil M.S., Gaikwad P.V., Bhamburdekar S.B., and Patil P.J. (2014). Isolation, characterization and salt tolerance activity of Rhizobium sp. from root nodules of some legumes. Int. J. Curr. Microbiol. App. Sci., 3(5): 1005-1008.

Peoples M.B., Herridge D.F., and Ladha J.K. (1995). Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production. Plant Soil, 174: 3–28.

Predeepa R.J., and Ravindran D.A. (2010). Nodule formation, distribution and symbiotic efficacy of Vigna unguiculata L. under different soil salinity regimes. Emir. J. Food Agric., 22(4): 275-284.

Rao D.L.N., and Sharma P.C. (1995). Effectiveness of rhizobial strains for chickpea under salinity stress and recovery of nodulation on desalinization. Indian J. Exp. Biol., 33: 500-504.

Redecker D., von Berswordt-Wallrabe P., Beck D.P., and Werner D. (1997). Influence of inoculation with arbuscular mycorrhizal fungi on stable isotopes of nitrogen in Phaseolus vulgaris. Biol. Fertil. Soils, 24: 344–346.

Sagasti M.T., and Marino D. (2015). PGPR sand nitrogen fixing legumes: a perfect team for efficient Cd phytoremediation? Plant Biotechnology, 81(6): 1-9.

Santos H., and da Costa M.S. (2002). Compatible solutes of organisms that live in hot saline environments. Environ. Microbiol., 4: 501–509.

Shamseldin A., and Werner D. (2005). High salt and high pH tolerance of new isolated Rhizobium etli strains from Egyptian soils. Curr Microbiol.,50(1): 11-16.

Shamseldin A., Sadowsky M., El-Saadani M., and Sun An C. (2008). Molecular Biodiversity and Identification of Free Living Rhizobium Strains from Diverse Egyptian Soils as Assessed by Direct Isolation Without Trap Hosts. American-Eurasian J. Agric. & Environ. Sci., 4(5): 541-549.

Sharma S.R., Rao N.K., Gokhale T.S., and Ismail S. (2013). Isolation and characterization of salt-tolerant rhizobia native to the desert soils of United Arab Emirates. Emir. J. Food Agric., 25(2): 102-108.

Shrivastava P., and Kumar R. (2015). Review, Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences. 22: 123–131.

Singh R.J., Chung G.H., and Nelson R.L. (2007). Landmark research in legumes. Genome, 50: 525–537.

Sobti S., Belhadj H.A., and Djaghoubi A. (2015). Isolation and Characterization of The Native Rhizobia Under Hyper-Salt Edaphic Conditions in Ouargla (southeast Algeria). Energy Procedia, 74: 1434 –1439.

Somasegaran P., and Hoben H.J. (1994). Handbook for Rhizobia: Methods in Legumes-Rhizobium Technology. Springer-Verlag Inc., New York.

Tate R.L. (1995). Soil microbiology (symbiotic nitrogen fixation). John Wiley & Sons, Inc., New York.

Tavakkoli E., Rengasamy P., and McDonald G.K. (2010). High concentrations of Na+ and Cl– ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany, 61(15): 4449–4459.

Thrall P.H., Bever J.D., and Slattery J.F. (2008). Rhizobial mediation of Acacia adaptation to soil salinity: evidence of underlying trade-offs and tests of expected patterns. Journal of Ecology, 96: 746–755.

Tu J.C. (1981). Effect of salinity on Rhizobium root hair interaction, nodulation and growth of Soybean. Can. J. Plant. Sci., 6l: 231-239.

USSL (1954). Salinity Laboratory Staff, Diagnosis and Improvement of Saline and Alkali Soils. In: USDA Agric. Handbook No. 60. U.S Government Printing Office, Washington, D.C.

Wang W., Vinocur B., and Altman A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1): 1–14.

Wani S.P., Rupela O.P., and Lee K.K. (1995). Sustainable agriculture in the semi-arid tropics through biological nitrogen fixation in grain legumes. Plant Soil, 174: 29–49.

Yan N., Marschnerc P., Caoa W., Zuoa C., and Qin W. (2015). Influence of salinity and water content on soil microorganisms. International Soil and Water Conservation Research, 3: 316–323.

Yoon J.H., Kang So-Jung., Hoon J., Yi H., Oh T., and Choong-Min. R. (2010). Rhizobium soli sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology. 60: 1387–1393.

Zahran H.H. (1999). Rhizobium-Legume Symbiosis and Nitrogen Fixation under Severe Conditions and in an Arid Climate. Microbiology and Molecular Biology Reviews, 63(4): 968–989.

Zahran H.H., Chahboune R., Moreno S., Bedmar E.J., Abdel-Fattah M., Yasser M.M., and Mahmoud A.M. (2013). Identification of rhizobial strains nodulating Egyptian grain legumes. International Microbiology, 16: 157-163.

Zou N., Dart P.J., and Marcar N. (1995). Interaction of salinity and rhizobial strain on growth and N2 fixation by Acacia ampliceps. Soil. Biol. Biochem. 27: 409-413.

Downloads

Published

2019-12-31

How to Cite

Elsharif, M. E. (2019). Benefits and Limitations of Rhizobium-Legume Symbiosis and Nitrogen Fixation Under Libyan Saline Soil: Mini Review. Journal of Marine Sciences and Environmental Technologies, 5(2), E 32–45. https://doi.org/10.59743/jmset.v5i2.57

Issue

Section

المقالات