Biodegradation of Crude Oil by Marine Bacteria Isolated From EL-Harika Port, Tobruk, Libya
DOI:
https://doi.org/10.59743/jmset.v7i1.32Keywords:
Marine Bacteria, Biodegradation, Isolation, Crude OilAbstract
Research in the field of remediation of oil pollution has pointed to the important role that microorganisms can play in redressing that pollution, and consequently environmental remediation, as they can utilize petroleum hydrocarbons as a sole source of carbon. This work aimed at isolating oil-degrading bacteria from EL-Harika port in Tobruk city. Twenty-two bacterial isolates from EL-Harika Port were grown on a Liquid medium contained crude oil as a sole carbon source. The isolates were then grown in five different oil concentrations which were (1%, 5%, 10%, 25%, and 50%). Some of the isolates (W1Cb, W2Aa, W2Ab, W2Ca, W3Ba, W3C, and W4Aa) exhibited differential abilities of growth up to 50% oil. These selected bacterial isolates (W2Aa, W2Ca, W3Ba, W3C, and W4Aa) were identified using the 16S rRNA methodology in the European Nucleotide as; Marinobacter hydrocarbonoc lasticus, Vibrio hepatarius, Vibrio alginolyticus, Vibrio parahaemolyticus, and Eubacteriumcombesii, respectively. The bacterial growth in 1% crude oil calculated as optical density (OD) measurement indicate the ability of all isolates for growth in crude oil for a period of 7 days, and continuation of growth for more than 21 days. In another investigation on bacterial growth in crude oil, a gas chromatographic analysis was conducted on the growth of five isolates which indicated that the highest rate of degradation (95.23%) was recorded in Vibrio alginolyticus isolate (W3Ba), and the lowest rate (47.61%) was recorded by Marinobacter hydrocarbonoclasticus and Vibrio parahaemolyticus. From the results obtained in this study, it can be concluded that the local bacterial isolates Marinobacter hydrocarbonoclasticus, Vibrio hepatarius, Vibrio alginolyticus, Vibrio parahaemolyticus, and Eubacteriumcombesii have a good capacity to degrade crude oil, and thus they can be used in the bioremediation of crude oil pollution.
References
أولاً: المراجع باللغة العربية
ابورويضة, عبد الله (1978). بروتين النفط. منشورات معهد الإنماء العربي، طرابلس، ليبيا.
بن الصادق، عبد الوهاب رجب هاشم (2002). الأمن البيئي. النشر العلمي والمطابع، جامعة الملك سعود، الرياض، السعودية.
البياتي، رضا إبراهيم؛ ضباب، جميل موسى (2005). استحداث طريق استخلاص كروماتوغرافيا الغاز لفصل وتقدير بعض المركبات الهيدروكربونية في النفط الخام وعينات صخرية. مجلة كلية التربية, 3: 1-14.
عبد الحميد، زيدان هندي وعبدالمجيد، محمد إبراهيم (1996). الملوثات الكيميائية والبيئة. الدار العربية للنشر والتوزيع، القاهرة، مصر.
عويد، ياسين حسين (2008). الفعل الانفرادي والمشترك لبعض العزلات البكتيرية في التحلل الحيوي لنفط خام القيارة. مجلة علوم الرافدين، 19: 101-115.
ثانياً: المراجع باللغة الإنجليزية
Abbot B.J. and Gledhi W.E. (1971). The extracellular accumulation of metabolic products by hydrocarbon degrading microorganisms. Adv. Appl. Microbiol., 14: 249-388.
Arvin E., Jensen B.K., and Gundersen A.T. (1989). Substrate interactions guring aerobic biodegradation of benzene. Appl. Environ. Micrbiol., 55(12): 3221-3225.
Atlas R.M. (1981). Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbial. Rev., 45(1): 180-209.
Atlas R.M. (1991). Microbial hydrocarbon degradation bioremediation of spill. Journal of Chemical Technology & Biotechnology, 52(2): 149-156.
Cerniglia C.E. (1984). Microbial Metabolism of Polycyclic Aromatic Hydrocarbons. Adv. Appl. Microbiol., 30: 31-71.
Chakrabarty A.M. (1972). Genetic Basis of the Biodegradation of SaliCylate in Pseudomonas. J. of Bacteriology, 112(2): 815-823.
Chakrabarty R. and Coates J.D. (2004). Anaerobic degradation of monoaromatic hydrocarbons. Appl. Microbiol. Biotechnol., 64(4): 437-446.
Dey K. and Roy P. (2011). Degradation of chloroform by immobilized cells of Bacillus sp. in calcium alginate beads. Biotechnol Lett., 33(6): 1101-1105.
Etoumi A. (2006). Microbial treatment of waxy crude oils for mitigation of wax precipitation. Journal of Petroleum Science and Engineering, 55(1-2): 111-121.
Fidorak P.M. and Westlake D.W.S. (1981). Microbial degradation of aromatic and saturates in prudhose oil as derermined by glass capillary gas chromatography. Canadian Journal of Microbiology, 27(4): 432-443.
Hohener P., Duwig C., Pasteris G. , Kaufmann K., Dakhel N., and Harms H. (2003). Biodegradation of petroleum hydrocarbon vapors: laboratory studies on rates and kinetics in unsaturated alluvial sand. J. Contam. Hydrol., 66(1-2): 93-115.
Hollaway S.L., Faw G.M., and Sizemore R.K. (1980). The bacterial community composition of an active oil field in the Northwestern Gulf of Mexico. Marine Pollution Bulletin, 11(6): 153-156.
Jones J., Knight M., and Byron J.A. (1970). Effect of gross population by kerosene hydrocarbons on the microflora of a moorland soil. Nature, 227(5263): 1166-1166.
Kafilzadeh F., Rafiee S., and Tahery Y. (2011). Evaluation of Bioremediation of naphthalene using native bacteria isolated from oil contaminated soils in Iran. Annals of Biological Research, 2(6): 610-616.
Kim J.M., Le N.T., Chung B.S., Park J.H., Bae J., Madsen E.L., and Jeon C.O. (2008). Influence of Soil Components on the Biodegradation of Benzene, Toluene, Ethylbenzene, and Xylenes by the Newly Isolated Bacterium Pseudoxanthomonas spadix BD-a59. Appl. Environ. Microbiol., 74(23): 7313-7320.
Leahy J.C. and Colwell R.P. (1990). Microbial degradation of hydrocarbons in the environment. Microbial Rev., 54(3): 305-315.
Lee E. and Cho K. (2008). Characterization of cyclohexane and hexane degradation by Rhodococcus sp. EC1. Chemosphere, 71(9): 1738-1744.
Lee E., Hong S.H., Oh M.H., and Lim J.S. (2011). Characterization biodegradation of Benzene, Toluene, Ethylbenzene, and Xylenes by the Newly Isolated Bacterium Pseudomonas putida AY-10 in Rhizosphere of Wastewater Treatment Reed. Int. Proc. Chem. Biol. Environ. Eng., 20: 445-743.
Liu C.W., Chang W.N., and Liu H.S. (2009). Bioremediation of n-alkanes and the formation of biofloccules by Rhodococcus erythropolis NTU-1 under various saline conditions and sea water. Biochemical Engineering Journal, 45(1): 69-75.
Mandal A.K., Sarma P.M., Singh B., Jeyaseelan C.P., Channashettar V.A., Lai B., and Datta J. (2012). Bioremediation: An Environment Friendly Sustainable Biotechnological Solution for Remediation of Petroleeum Hydrocarbon Contaminated Waste. ARPN Journal of Science and Technology, 2(8): 2225-7217.
Mazzeo D.E.C., Levy C.E., Angelis D.F., and Marin-Morales M.A. (2010). BTEX biodegradation by bacteria from effluents of petroleum refinery. Sci. Total Environ., 408(20): 4334-4340.
Pelczar M., Reid R., and Chan E. (1982). Microbiology. McGraw-Hill publishing company Ltd.
Phillips G.J. and Stewart J.E. (1974). Distribution of hydrocarbon utilizing bacteria in Northwestern Atlantic waters and coastal sediments. Canadian Journal of Microbiology, 20(7): 955-962.
Pinholt Y., Struwe S., and Kjoller A. (1979). Microbial changes during oil decomposition in soil. Echography, 2(3): 195-200.
Prince R.C., Elmendorf D.L., Lute J.R., Hsu C.S., Haith C.E., Senius J.D and Dechert G.J. (1994). 17(alpha) (H), 21(beta) (H)-Hopane as aconserved internal marker for estimating the biodegradation of crude oil. Environ. Scin. Technol., 28(1): 142-145.
Reisfeid A., Rosenberg E., and Gutnick D. (1972). Microbial degradation of crude oil: factors affecting the dispersion in sea water by mixed and pure cultures. Appl. Microbiol. 24(3): 363-368.
Saieb F.M. and Elghazawani A.H. (2008). Isolation and Identification of Bacteria in Sarir Refinery Wastewater in Libya. Delta Journal of Science, 33(1): 10-13.
Sardessai Y.N. and Bhosle S. (2004). Industrial potential of organic solvent tolerant bacteria. Biotechnol. Prog., 20(3): 655-660.
Shennan J.L. (2006). Utilisation of C2–C4 gaseous hydrocarbons and isoprene by microorganisms. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(3): 237-256
Shimp R.J. and Pfaender F.K. (1987). Effect of adaptation to phenol on biodegradation of monosubstituted phenols by aquatic microbial communities. Applied and Environmental Microbiology, 53(7): 1496-1499.
Singh B.K., Walker A., Morgan J.A.W., and Wright D.J. (2003). Role of Soil pH in the Development of Enhanced Biodegradation of Fenamiphos. Appl. Environ. Microbiol., 69(12): 7035-7043.
Smits T.H.M., Witholt B., and Beilen J.B.V.(2003). Functional characterization of genes involved in alkanes oxidation by Pseudomonas aeruginosa. Antonie Van Leeuwenhoek, 84(3):193-200.
Sugaya K., Nakayama O., Hinata N., Kamekura K., Ito A., Yamagiwa K., and Ohkawa A. (2001). Biodegradation of quinoline in crude oil. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 76(6): 603-611.
Vidali M. (2001). Bioremediation an overview. Pure Appl. Chem., 73: 1163-1172.
Watanabe K., Teramoto M., Futamata H., and Harayama S. (1998). Molecular Detection, Isolation, and Physiological Characterization of Functionally Dominant Phenol-Degrading Bacteria in Activated Sludge. Applied and Environmental Microbiology, 64(11): 4396-4402.
Yi T., Lee E., Ahn Y.G., Hwang G., and Cho K. (2011). Novel biodegradation pathways of cyclohexane by Rhodococcus sp. EC1. Journal of Hazardous Materials, 191(1-3): 393–396.
Zahed M.A., Abdulaziz H., Isa M.H., Mohajeri L., and Mohajeri S. (2010). Optimal Conditions for Bioremediation of Oily Seawater. Bioresource Technology, 101(24): 9455-9460.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Journal of Marine Sciences and Environmental Technologies
This work is licensed under a Creative Commons Attribution 4.0 International License.