

دراسة التحلل الحيوي للنفط الخام بواسطة عزلات بكتيرية معزولة من ميناء الحريقة، طبرق، ليبيا

 2 فايز عبد الحميد محمد 1,* و فرج محمد شعيب

1) قسم علوم البيئة، كلية الموارد الطبيعية وعلوم البيئة، جامعة طبرق، طبرق، ليبيا. (2) قسم علم النبات، كلية العلوم، جامعة عمر المختار، البيضاء، ليبيا.

f.mohammed@tu.edu.ly *البريد الإلكتروني:

Biodegradation of Crude Oil by Marine Bacteria Isolated From EL-Harika Port, Tobruk, Libya

Fayiz A.H. Mohamed^{1,*} and Farag M. Shaieb²

Received: 25 April 2021; Revised: 01 June 2021; Accepted: 15 June 2021.

الملخص

أشارت الأبحاث في مجالجة التلوث النفطي إلى الدور المهم الذي يمكن أن تلعبه الكائنات الحية الدقيقة في معالجة هذا التلوث، وبالتالي المعالجة البيئية، حيث يمكنها استخدام الهيدروكربونات البتولية كمصدر وحيد للكربون. لذا تحدف هذه الدراسة إلى عزل البكتيريا المسببة للتحلل الحيوي للنفط الخام من ميناء الحريقة بمدينة طبرق. حيث نمت 22 عزلة بكتيرية من ميناء الحريقة على وسط سائل يحتوي على زيت خام كمصدر وحيد للكربون. ثم نمت العزلات في خمسة تراكيز زيت مختلفة وهي (1٪، 5٪، 10٪، 55٪، 50٪). أظهرت بعض العزلات (W2Ab و W2Ab و W3Ca و

الكلمات الدالة: بكتيريا بحرية، تحلل حيوي، عزل، نفط خام.

Abstract

Research in the field of remediation of oil pollution has pointed to the important role that microorganisms can play in redressing that pollution, and consequently environmental remediation, as they can utilize petroleum hydrocarbons as a sole source of carbon. This work aimed at isolating oil-degrading bacteria from EL-Harika

¹⁾ Department of Environmental Science, Faculty of Natural Resources and Environmental Sciences, Tobruk University, Tobruk, Libya.

²⁾ Department of Botany, Faculty of Sciences, Omar Al-Mukhtar University, Albayda, Libya.

محمد وشعيب، 2021

port in Tobruk city. Twenty-two bacterial isolates from EL-Harika Port were grown on a Liquid medium contained crude oil as a sole carbon source. The isolates were then grown in five different oil concentrations which were (1%, 5%, 10%, 25%, and 50%). Some of the isolates (W1Cb, W2Aa, W2Ab, W2Ca, W3Ba, W3C, and W4Aa) exhibited differential abilities of growth up to 50% oil. These selected bacterial isolates (W2Aa, W2Ca, W3Ba, W3C, and W4Aa) were identified using the 16S rRNA methodology in the European Nucleotide as; Marinobacter hydrocarbonoc lasticus, Vibrio hepatarius, Vibrio alginolyticus, Vibrio parahaemolyticus, and Eubacteriumcombesii, respectively. The bacterial growth in 1% crude oil calculated as optical density (OD) measurement indicate the ability of all isolates for growth in crude oil for a period of 7 days, and continuation of growth for more than 21 days. In another investigation on bacterial growth in crude oil, a gas chromatographic analysis was conducted on the growth of five isolates which indicated that the highest rate of degradation (95.23%) was recorded in Vibrio alginolyticus isolate (W3Ba), and the lowest rate (47.61%) was recorded by Marinobacter hydrocarbonoclasticus and Vibrio parahaemolyticus. From the results obtained in this study, it can be concluded that the local bacterial isolates Marinobacter hydrocarbonoclasticus, Vibrio hepatarius, Vibrio alginolyticus, Vibrio parahaemolyticus, and Eubacteriumcombesii have a good capacity to degrade crude oil, and thus they can be used in the bioremediation of crude oil pollution.

Keywords: Marine Bacteria, Biodegradation, Isolation, Crude Oil.

1. المقدمة

يعتبر البترول سائلا لزجا وخليطا، يحتوي على آلاف المركبات المتكونة من الكربون والهيدروجين، كما أن النفط يحتوي على العديد من المركبات العضوية التي يعتبر الكثير منها سامًا للكائنات الحية، ومن أخطر تلك المركبات مركب البنزويرين (Benzopyrene) وهو من الهيدروكربونات المسببة للسرطان (عبد الحميد وعبد الجميد، 1996). إن تفكك هيدروكربونات النفط الخام وتحللها تُعد ذات فائدة عظيمة لتحولها إلى أصناف أخرى أقل سمية وأقل خطراً على البيئة، وتشير الدراسات إلى أن النفط الخام يوفر للبكتيريا المحللة للنفط مصدراً وحيداً للكربون والطاقة، على الرغم من أن نواتج التحلل تُعد سامة للبكتيريا إلا أنها لا تكون بالمدى الكبير الذي يُثّبِط نموها، ويعد النفط الخام الثقيل مصدر وحيد للكربون والطاقة (عويد، 2008). لذا عندما تتلوث البيئة البحرية بالنفط تزداد الكائنات المحللة للهيدروكربونات بسرعة، وعادة ما تتجاوز نسبة التجمعات البكتيرية المحللة للهيدروكربون في البيئات البحرية الملوثة بالهيدروكربون من إجمالي أنواع البكتيريا (Atlas, 1981).

لقد أصبحت المعالجة الحيوية طريقة هامة في استعادة البيئات الملوثة بالنفط إلى سابق عهدها عن طريق استغلال التجمعات البكتيريا ذات القدرة على التحليل، والمعالجة الحيوية للملوثات النفطية تتغلب على العوامل التي تحد من معدلات التحلل الحيوي للهيدروكربون، وهذا عادة ما يستلزم استخدام القدرات الإنزيمية للميكروبات ذاتية المنشأ المحللة للهيدروكربونات والتي تأخذ في الاعتبار العوامل البيئية وخصوصًا التركيز الجزيئي للأكسجين والأشكال المثبتة من النيتروجين والفوسفات المعززة لمعدلات التحلل الحيوي للهيدروكربونات (Atlas, 1981).

وتُعرف المعالجة الحيوية أو البيولوجية (Bioremediation) على أنها استخدام الكائنات الحية لتحويل المخلفات والملوثات الخطيرة إلى منتجات طبيعية نافعة وغير مضرة، وتعتمد هذه العملية في المقام الأول على الصفات الوراثية للكائن الحي وما يفرزه من إنزيمات (بن الصادق، 2002). والمعالجة الحيوية محدودة أو لها قيود مثلها مثل الأساليب الأخرى، فبعض الملوثات مثل الهيدروكربونات العضوية المشبعة بالكلور أو الأروماتية الحلقية المقاومة لهجوم الميكروبات لا تتحلل إلا بشكل بطيء، وبالتالي ليس من السهل التنبؤ بمعدلات التنظيف عند تطبيق المعالجة الحيوية ولا يوجد قواعد للتنبؤ بما إذا المادة الملوثة يمكن تحللها أم لا (Vidali, 2001).

دراسة التحلل الحيوي للنفط الخام بواسطة عزلات بكتيرية معزولة من ميناء الحريقة

كما أن اختيار ظروف التحليل المثلى في كروماتوغرافيا الغاز السائل لأية طريقة فصل إنما تجري بموازنة بين عدد من العوامل مثل درجة الحرارة وسرعة الغاز الناقل وطول العمود وانتقائية الطور السائل ونسبته في العمود وغيرها، إن كروماتوغرافيا الغاز ليست الطريقة المثلى لتعيين نوع وكم المتشابحات الجزيئية فحسب ولكنها تعد الطريقة الأبسط والأسرع والأكثر فائدة في تفسير طبيعة التأثير بين المواد المذابة والمذيبات المستخدمة كأطوار ثابتة وقد يكون هذا واضحاً بصورة أكثر خصوصية في الدراسات الأروماتية البسيطة عند مدى درجات حرارة عالية (البياتي وضباب، 2005).

بينت دراسة (Chakrabart, 1972) العوامل الوراثية والإنزيمية لتحلل النفط الخام بواسطة بكتيريا من نوع المحدود والمحدود المحدود ال

وكما درس كل من (Chakrabarty and Coates (2004) التحلل الحيوي للهيدروكربونات الأروماتية أحادية الحلقة مثل التلوين والبنزين والبارا زايلين والميتازيلين والاورثو زايلين. أما الألكانات الإعتيادية فقد تم اختبارها أيضا، حيث درس التلوين والبنزين والبارا زايلين والميتازيلين والاورثو زايلين. أما الألكانات الإعتيادية فقد تم اختبارها أيضا، حيث درس Smits et al. (2003) استهلاك الأوكتان الاعتيادي بواسطة البكتيريا. واختبر (والبيوتان والبيوتان والبيوتان والبيوتان والبيوتان والبيوتيلين والبيوتين أحادي الخلية. كما اختبر (1994) Prince et al. (1994) المكانية استخدام أكثر مكونات النفط الخام مقاومة للتحلل الحيوي وهي الهوبانات كمصدر للكربون، واستخدم (2001) Sugaya et al. (2001) من ضمن مكونات النفط الخام كمصدر للكربون والنيتروجين.

لذا في هذه الدراسة تم دراسة كفاءة العزلات على النمو على مشتقات مختلفة من الهيدروكربونات، ودراسة مقدرتها على التحلل الحيوي للنفط الخام باستخدام جهاز كروماتوغرافيا الغاز.

2. المواد والطرق

1.2. موقع الدراسة

تقع منطقة الدراسة في الجزء الجنوبي الشرقي من خليج طبرق والواقعة شمال شرق ليبيا، كما يوجد بالقرب من منطقة الدراسة ممر ملاحي يستخدم لحركة السفن والناقلات النفطية يمتد طوله من بداية الخليج إلى مسافة تبلغ حوالي 2 ميل بحري داخل حدود الخليج وعرضه حوالي 0.5 ميل بحري ويبلغ متوسط عمق المياه في هذا الممر حوالي 16 متراً.

2.2. جمع العينات

تم جمع 12 عينة من أربع مواقع مختلفة داخل منطقة الدراسة، كل ثلاث عينات من موقع مختلف، وتشمل هذه العينات مياه بحر على عمق حوالي 1م في زجاجات معقمة سعة 100 ملل قاتمة اللون وتم حفظها باردة حتى وصولها إلى المعمل وإجراء التجارب المعملية عليها.

3.2. عزل البكتيريا المحللة للنفط الخام

تم تحضير وسط البيزل (Basal Media) ووضع 9 ملل منها داخل قناني زجاجية وتم إضافة 0.1~% ملل نفط خام كمصدر وحيد للكربون إلي الوسط ومن ثم تعقيم الزجاجات بمحتوياتها في المعقم عند درجة حرارة 121° م لمدة 15 دقيقة سعة هذه القناني 25 ملل. ثم تم تنقية العزلات التي أعطت أفضل نمو وحفظها، واجراء باقى التجارب عليها.

4.2. تعريف السلالات البكتيرية المعزولة والمنتخبة

تم تعريف بعض العزلات البكتيرية المنتخبة (الأفضل نمواً) عن طريق طريقة 16S rRNA في European Nucleotide متعريف بعض العزلات البكتيريا . Archive

البكتيريا المعــــرفة	الرمز المسجل في بنك الجين الأوروبي	العزلات البكتيرية
Marinobacter hydrocarbonoclasticus	HG813108	W2Aa
Vibrio hepatarius	HG813107	W2Ca
Vibrio alginolyticus	HG813111	W3Ba
Vibrio parahaemolyticus	HG813110	W3C
Eubacterium combesii	HG813112	W4Aa

جدول 1. تعريف العزلات البكتيرية بواسطة طريقة 16S rRNA

5.2. اختبار قدرة العزلات البكتيرية المحلية على النمو و تحلل مركبات هيدروكربونية مختلفة

Toluene, Benzene) وهي: وهي: الخيار قدرة العزلات على النمو في عشر مشتقات مختلفة من المركبات الهيدروكربونية، وهي: Xylene, Phenol, n-Hexane, n-Octane, Cyclohexane, Carbon tetrachloride, Chloroform, وتم تحضير وسط البيزل ووضع 10 ملل منها داخل قناني زجاجية معقمة، وأضيف إليها تركيز 10 من المركبات الهيدروكربونية المختلفة، ووضعت القناني في الحاضنة عند درجة حرارة 032-30م لمدة 7 أيام. وتم مراقبة النمو من خلال مراقبة عكارة الوسط بالعين المجردة.

6.2. دراسة كفاءة البكتيريا المحلية والمعرفة على تحلل النفط الخام

لتقدير مقدرة البكتيريا المنتقاة والمعرفة على تحلل النفط الخام أجريت التجربة وفقاً للتالي: تم زرع خمس أنواع من البكتيريا المنتخبة على وسط الآجار المغذي وحضنت عند درجة حرارة 30-32م لمدة 81-24 ساعة، بعدها تم تحضير قناني زجاجية معقمة (سعة 250 ملل) تحتوي على 100 ملل من وسط البيزل مضاف إليه 1% ملل من النفط الخام، وتضاف النموات البكتيرية المنتقاة والمعرفة إلى هذه القناني، ومن بعدها تم وضعها في الحاضنة عند درجة حرارة 30-32م ومراقبة العكارة لمدة شهر كامل.

دراسة التحلل الحيوي للنفط الخام بواسطة عزلات بكتيرية معزولة من ميناء الحريقة

7.2. قياس الكثافة الضوئية (OD)

تم أحذ العينات في اليوم السابع، الرابع عشر، الواحد والعشرين، اليوم الثلاثون لقياس معدل النمو وذلك من خلال قياس العكارة على جهاز قياس العكارة عند طول موجي (540 نانومتر). حيث تُستخدم الكثافة البصرية (OD) كقياس بديل سريع لتركيز الكتلة الحيوية المعلقة. في الواقع، قياسات OD هي القياس الأكثر شيوعًا المستخدمة في مختبرات علم الأحياء الدقيقة لتقييم نمو الميكروبات. وتم استخدامه من الناحية النوعية لعكارة المزرعة البكتيرية وكميًا كمقياس لشدة الضوء المنقول على طول المسار من خلال ثقافة طول المسار المعروف. في حين أن التعكر المقدر بصريًا للمزرعة البكتيرية ليس سوى تقدير تقربي لتركيز الخلية، إلا أنه مفيد في معرفة درجة نمو الكائن الحي. على سبيل المثال، يتم استخدام OD بشكل روتيني لتحديد مرحلة النمو للمزرعة البكتيرية. يُفترض أيضًا أن OD يرتبط ارتباطًا مباشرًا بالكتلة الحيوية بحيث يمكن مراقبة تركيز الخلية دون الحاجة إلى إجراء إجراءات مملة لقياس الوزن الجاف للخلية أو تركيز الخلايا عن طريق قياس الدم أو خلايا تشكيل المستعمرة (CFU)ملل). يمكن أيضًا استخدام OD لتقدير مستويات الأصباغ داخل الخلايا عندما تتوافق الموجة المختارة مع امتصاص اللون. الهدف من التحليل المقدم هنا هو تعزيز فهم الاستخدام الفعال لـ OD كبديل لرصد الكتلة الحيوية وتصبغ الخلية.

8.2. الأس الهيدروجيني (pH)

تم أخذ العينات وقياس الأس الهيدروجيني لها في اليوم الأول وفي اليوم الثلاثين من التجربة.

9.2. استخلاص النفط الخام المتبقى

لقد استخلص النفط الخام من الوسط الغذائي بعد 14 و30 يوم من التحضين، باستعمال خليط من هكسان وداي كلورميثان بنسبة 1:1 باتباع طريقة (Etoumi, 2006). وبعد ذلك تم تجفيف المحلول الذي تم استخلاصه باستعمال كبريتات الصوديوم اللامائية على ورقة ترشيح رقم 50.

10.2. التحليل الكروموتوغرافي بالغاز (Gas-Chromatography)

أخذت العينات من العينة الضابطة ومن مزارع البكتيريا في اليوم الرابع عشر واليوم الثلاثون من التجربة، وذلك لأجل التحليل الكروموتوغرافي لها.

ولقد أجري التحليل بطريقة الفصل بالغاز (Varian CP-3800) باستخدام سيليكون الميثيل سلسلة 007 (العمود 400 و 400 مدلات تدفق الهيدروجين والهواء لكاشف (ID) و 30 (ID) وكانت معدلات تدفق الهيدروجين والهواء لكاشف (ID) و 30 و 400 ملل/دقيقة على التوالي، وكانت درجات حرارة الحاقن والكاشف 300°م، وكانت درجة حرارة الفرن الاولية 60°م، وبرمجت لترتفع بمعدل 60°م في الدقيقة إلى 280°م لمدة 30 دقيقة، واستخدم الهيليوم كغاز ناقل، وهذه التحاليل TPH و CP-3800 مركز بحوث النفط، طرابلس، ليبيا.

3. النتائج

1.3. اختبار قدرة العزلات البكتيرية المنتقاة على تحلل مركبات هيدروكربونية مختلفة

رغم أن البكتيريا المعزولة والمنتقاة لها القدرة على النمو على تراكيز مختلفة من النفط الخام، إلا انه كان من الضروري تمييز قدرة هذه العزلات المنتقاة على تحلل مركبات هيدروكربونية مختلفة، ولهذا السبب كل نوع معزول من البكتيريا المنتقاة أخضع لتجربة تمهيدية لدراسة النمو بشكل مفصل، فتركيبة المركب مهمة في تحديد القدرة على النمو ومن أجل التأكد من قدرة البكتيريا المنتقاة على النمو تم استخدام عشر مركبات مختلفة من الهيدروكربونات وكانت كلها بتركيز (v/v) كركائز للفحص التمهيدي، وتمت مراقبة نمو البكتيريا بشكل منتظم عن طريق تقدير الكثافة الملحوظة بالعين المجردة.

أوضحت النتائج في الجدول (2) حسب الطريقة التقديرية للنمو بواسطة العين المجردة الخاصة بالمركبات الأروماتية أن حوالي نسبة 43% من العزلات أعطت نمو ممتاز (W1Cb, W3Ba, W4Aa) على البنزين، وتقريباً 14% منها أعطت نمو خعيف (W2Ab, W3C)، ونسبة 29% تقريباً منها أعطت نمو ضعيف (W2Ab, W3C)، وتقريباً 14% لم تعطي نمو (W1Cb, W3Ba, أما نشاطها على التولوين فقد أعطت حوالي 57% من العزلات نمواً ممتازاً مركب (W2Ca) على نفس المركب، أما نشاطها على التولوين فقد أعطت حوالي 20% منها نمو ضعيف (W2Aa, W2Ab) ونشاهد في مركب الزايلين أن حوالي 71% من العزلات أعطت نمو ممتازاً (W1Cb, W2Ca, W3Ba, W3C, W4Aa) وتقريباً و20% منها أعطت نمو ضعيف (W1Cb, W2Ca, W3Ba, W3C, W4Aa)، أما نشاط العزلات على الفينول فلوحظ أن حوالي نسبة 29% من العزلات أعطت نمو ممتازاً (W1Cb, W3Ba)، وتقريباً 14% منها نمو جيد (W4Aa)، وحوالي 29% منها نمو ضعيف (W1Cb, W3Ba)، وتقريباً 14% منها نمو جيد (W4Aa)، وحوالي 29% منها نمو ضعيف (W2Ca, W3C)، والنسبة المتبقية لم تعطي نمواً (W2Aa,W2Ab).

جدول 2. نمو العزلات على المركبات الأروماتية

Aromatic Compounds			العينة	, * (
Phenol	Xylene	Toluene	Benzene	٠٠٠٠	
+++	+++	+++	+++	W1cb	1
-	+	+	-	W2Aa	2
-	+	+	+	W2Ab	3
+	+++	++	++	W2Ca	4
+++	+++	+++	+++	W3Ba	5
+	+++	+++	+	W3C	6
++	+++	+++	+++	W4Aa	7
-	-	-	-	Con	8

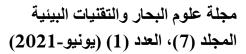
كما أوضحت النتائج في الجدول (3) الخاص بالمركبات الأليفاتية أن حوالي نسبة 71% من العزلات أعطت نمو ممتاز (W2Aa, (W2Aa, W3Ba,W3C, W4Aa) على الهكسان، وتقريباً 29% منها أعطت نمو ضعيف (W1Cb, W2Ca, W3Ba,W3C, W4Aa) أما نشاطها على الاوكتان فقد أعطت حوالي 14% من العزلات نمو ممتاز (W3Ba)، وحوالي 57% منها نمو حيد (W1Cb, W2Ca, W3C,W4Aa)، وتقريبا 29% منها نمو ضعيف (W1Cb, W3Ba,W4Aa)، ونشاهد في مركب سايكلوهكسان أن حوالي 43% من العزلات أعطت نمو ممتاز (W1Cb, W3Ba,W4Aa) وتقريباً 14% منها نمو ضعيف (W2Ab, W2Ca)، والنسبة الباقية لم تعطى نمو (W2Aa)، أما نشاطها على

دراسة التحلل الحيوي للنفط الخام بواسطة عزلات بكتيرية معزولة من ميناء الحريقة

مركب كربون تيترا كلورايد فقد أعطت العزلات حوالي 57% نمو ممتاز (W1Cb, W3Ba, W3C, W4Aa) وتقريباً وتويياً (W2Ca, نيترا كلورايد فقد أعطت نمو جيد (W2Ca)، والنسبة الباقية لم تعطي نمو (W1Cb,W3Ba,W4Ab)، وكما شوهد في الكلوروفورم أن حوالي 43% من العزلات أعطت نمو ممتاز (W1Cb,W3Ba,W4Aa)، وتقريبا 29% منها أعطت نمو جيد (W2Ca, والنسبة الباقية أعطت نمو ضعيف (W2Aa,W2Ab).

جدول 3. نمو العزلات على المركبات الأليفاتية

Aliphatic Compounds						
Chloroform	Carbon tetrachloride	Cyclohexane	n-Octan	n-Hexan	العينة	ت
+++	+++	+++	++	+++	W1cb	1
+	-	-	+	+	W2Aa	2
+	-	+	+	+	W2Ab	3
++	++	+	++	+++	W2Ca	4
+++	+++	+++	+++	+++	W3Ba	5
++	+++	++	++	+++	W3C	6
+++	+++	+++	++	+++	W4Aa	7
-	-	-	-	-	Con	8


كما بينت النتائج في الجدول (4) والصورة (1) الخاص بالمركبات الأروماتية متعددة الحلقات أن حوالي نسبة 43% من (W2Ca, العزلات أعطت نمو ضعيف (W1Cb, W3Ba, W3C) على النفثالين، وتقريباً 29% منها أعطت نمو ضعيف (W2Aa, W2Ab). والنسبة الباقية لم تعطى نمو (W2Aa, W2Ab).

جدول 4. نمو العزلات على المركبات الأروماتية متعددة الحلقات (PAHs)

Aromatic Hydrocarbons (PAHs) Naphthalene	العينة	ت
++	W1cb	1
_	W2Aa	2
_	W2Ab	3
+	W2Ca	4
++	W3Ba	5
++	W3C	6
+	W4Aa	7
-	Con	8

2.3. قدرة البكتيريا المعزولة والمعرفة على تحليل النفط الخام

بعد اختيار أجناس البكتيريا تم استخدامها لتحليل النفط الخام وقياس نشاطها بمراقبة الكثافة البصرية (OD) عند 540 نانومتر، وقياس تغيرات الأس الهيدروجيني (pH)، والتحليل الكروموتوغرافي لها.

صورة 1. درجة العكارة الناتجة عن النشاط البكتيري على احد المركبات الاروماتية متعددة الحلقات (النفثالين). (W3C, W3Ba) (A, B)

3.3. استخدام طريقة الكثافة البصرية (OD)

تم اخذ الكثافة البصرية لأنواع البكتيريا المعرفة على طول موجي (540 نانومتر) بعد مرور (7 ايام، 14 يوم، 21يوم، 30 يوم) والتفاصيل مبينة في الجدول (5). وقد تم مراقبة نمو أنواع البكتيريا بشكل منتظم بقياس الكثافة البصرية عند (540 نانومتر) وقد تبين اختلاف كبير في معدل النمو في المزارع البكتيرية فمثلا نمو سلالة بكتيريا W2Aa يتسم بمرحلة نمو ابتدائية سريعة في أول فترة الحضانة، وبينت هذه السلالة نمو حتى نماية فترة الحضانة 30 يوم، ومعدل نمو سلالة W2Ca اتسم بمرحلة نمو ابتدائية سريعة وتعتبر أكثر كثافة في النمو مقارنة بباقي العزلات حيث استمر نموها حتى نماية التجربة، أما معدل نمو سلالات W3Ba, W3C استمر في النمو حتى نماية التجربة، ومعدل نمو سلالة W4Aa لوحظ نموه حتى 21 يوم من التجربة ثم بدأ في الانحدار. ونلاحظ بأن أغلب النموات بدأت خلال 270 ساعة من الحضانة وأغلب النموات استمرت في النمو وقيامها بتكسير النفط الخام، في حين عزلتان فقط بدأت في الانحدار بعد 21 يوم من الحضانة.

جدول 5. قياسات العكارة لأنواع البكتيريا المعرفة

قراءات جهاز قياس العكارة (Spectrophotometer)				
30 يوم	21 يوم	14 يوم	7 أيام	العينة
1.064	0.786	0.418	0.258	W2Aa
1.316	0.993	0.401	0.193	W2Ca
0.810	0.705	0.436	0.162	W3Ba
0.850	0.671	0.415	0.331	W3C
0.794	0.939	0.657	0.590	W4Aa
0	0	0	0	Con

4.3. الأس الهيدروجيني (pH)

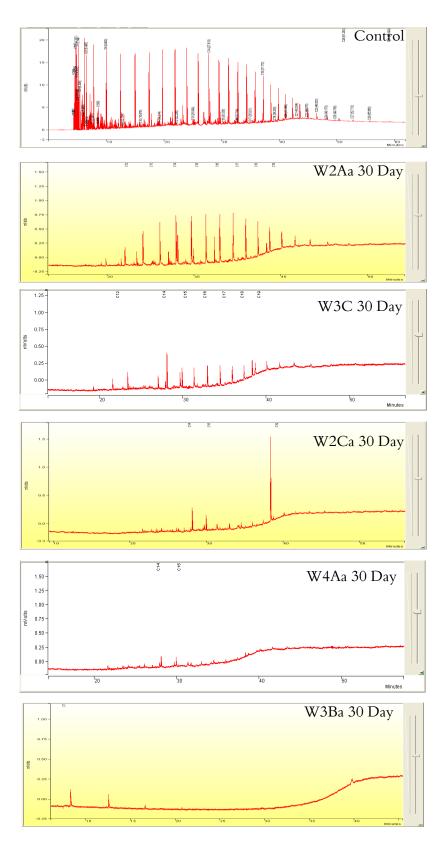
تم تحديد اله pH في أول وأخر فترة الحضانة والنتائج في الجدول (6) تبين التغيرات في الأس الهيدروجيني والتي انخفضت بمعدل W2Aa, W2Ca, W3Ba, W3C, W4Aa) على التوالي في اليوم (0.3، 1.1، 0.8، 0.7) على التوالي في اليوم من الحضانة، وهذا الانخفاض في درجة حموضة الوسط نتيجة للنشاط البكتيري.

دراسة التحلل الحيوي للنفط الخام بواسطة عزلات بكتيرية معزولة من ميناء الحريقة

30 يوم	د مرور	الـ pH بعد	قراءات ا	. 6	جدول
--------	--------	------------	----------	------------	------

معدل الانخفاض*	بعد 30 يوم	اليوم الأول	العينة
0.3	6.9	7.2	W2Aa
0.8	6.4	7.2	W2Ca
1.1	6.1	7.2	W3Ba
0.7	6.5	7.2	W3C
0.8	6.4	7.2	W4Aa

^{*} معدل الانخفاض: هذا الانخفاض في درجة حموضة الوسط يعبر النشاط البكتيري.


5.3. الفصل بالغاز (GC-MS) Gas Chromatography Mass Spectrometry

إن التغيرات في التركيبة الكيميائية للنفط الخام بعد نمو سبعة مزارع بكتيريا لمدة (14 يوم و30 يوم) من الحضانة مبينة في الشكل (1)، فبعد 14 يوم من الحضانة تحلل (28.57%) بفعل بكتيريا W4Aa, W3C فقد قامت بتحلل (1)، فبعد 14 يوم من الحضانة تحلل (47.61%) بفعل بكتيريا W2Aa, W3C. وكذلك تحلل (23.80%) من النفط الخام. أما بعد 30 يوم من الحضانة تحلل (47.61%) بفعل بكتيريا W2Aa, W3C. وكذلك تحلل كانت (95.23%) بفعل بكتيريا W3Ba. بينما أعلى نسبة تحلل كانت (95.23%) والتي قامت بما بكتيريا

4. المناقشة

لقد أصبحت المعالجة الحيوية طريقة هامة في استعادة البيئات الملوثة بالنفط إلى سابق عهدها عن طريق استغلال النشاطات الطبيعية ذات القدرة على التحليل (Atlas, 1991)، حيث أن كفاءة التحلل الحيوي للنفط الخام بواسطة الفطريات في التربة تتراوح بين 6 إلى 82% وكفاءة التحلل الحيوي للنفط الخام للبكتيريا في التربة تتراوح بين 6 إلى 82% كما بينه كل من (Pinholt et al., 1979; Jones et al., 1970)، أما كفاءة البكتيريا البحرية في التحلل الحيوي للنفط الخام فتتراوح بين (Hollaway et al., 1980; Phillips and Stewart, 1974) .

وبالنظر إلى نمو البكتيريا المعزولة على الهيدروكربونات المختلفة فقد اتضح أن البكتيريا المعزولة لها المقدرة على النمو على جميع المشتقات النفطية العشرة التي تم دراستها واستخدمتها كمصدر وحيد للكربون. ووفقاً لما تشير إليه النتائج عن نمو البكتيريا المعزولة في مركب البنزين فإن ثلاث أنواع (W1cb, W3Ba, W4Aa) كانت قادرة من النمو على البنزين بشكل ممتاز، أما على مركب الزايلين فإن خمس أنواع (W1cb, W2Ca, W3Ba, W3C, W4Aa) كانت قادرة من النمو على الزايلين بشكل ممتاز، وهذا يتفق مركب التولوين أربع أنواع (Arvin et al., 1989) أعطت نمو ممتاز، وهذا يتفق مع دراسة (Arvin et al., 1989) بأن البكتيريا القادرة على تحليل الزايلين والتولوين قادرة أيضا على تحليل البنزين، وهذا ينطبق أيضا مع دراسة (Lee et al., 2011) والتي تقول بأن هنالك أنواع معينة من البكتيريا قادرة على استغلال الهيدروكربونات الأروماتية مثل البنزين والزايلين والتولوين كمصدر وحيد للكربون. وتعتبر المركبات الأروماتية خفيفة الوزن الجزيئي مشل البنزين والزايلين وهي من المركبات السامة الموجودة في النفط وسهلة التحليل بواسطة الكائنات الدقيقة مثيل البنزين والزايلين وهي من المركبات السامة الموجودة في النفط وسهلة التحليل بواسطة الكائنات الدقيقة (Mazzeo et al., 2010; Kim et al., 2008; Atlas, 1991).

شكل 1. نتائج جهاز ال GC لتحلل النفط الخام بواسطة العزلات البكتيرية المنتقاة

دراسة التحلل الحيوي للنفط الخام بواسطة عزلات بكتيرية معزولة من ميناء الحريقة

بالنظر إلى نمو العزلات على مركبات سايكلو هكسان وكلوروفورم فقد أعطت حوالي 43% من العزلات نمو ممتاز، أما النفثالين فقد أعطت تقريبا 43% في جيد، وتعتبر هذه المركبات ذات سمية مرتفعة نما يصعب على بعض أنواع البكتيريا بشكل عام تحليلها في حال وجودها بتركيزات مرتفعة (Sardessai and Bhosle, 2004). وبالنظر إلى ما تشير إلية النتائج فقد وجد أن نمو البكتيريا المعزولة على مركب سايكلو هكسان ثالاث عزلات (W1Cb, W3Ba, W4Aa) كانت قادرة على النمو بشكل البكتيريا المعزولة على العديد من الدراسات التي ذكرت بأن هناك بعض أنواع من البكتيريا يمكنها استغلال السايكلوهكسان كمصدر وحيد للكربون (Lee and Cho, 2008; Yi et al., 2011) ومن النتائج أيضا نجد أن أقل نمو للبكتيريا المعزولة كان على مركب النفثالين حيث وجد أن أنواع (W1Cb, W3Ba, W3C) أعطت نمو جيد، ونوعان نمو ضعيف، ونوعان لم تعطي نمو، وهذا ينطبق مع نتائج دراسة (Kafilzadeh et al., 2011) والتي ذكرت بأن هناك بعض أنواع من البكتيريا يمكنها استغلال النفثالين كمصدر وحيد للكربون. وكذلك تشير النتائج إلى أن نمو البكتيريا المعزولة على مركب كلوروفورم ثلاث يمكنها استغلال النفثالين كمصدر وحيد للكربون. وكذلك تشير النتائج إلى أن نمو البكتيريا المعزولة على مركب كلوروفورم ثمصدر وحيد للكربون. وكذلك تشير النتائج إلى أن نمو البكتيريا المعزولة على مركب كلوروفورم كمصدر وحيد للكربون. هناك بعض أنواع من البكتيريا يمكنها استغلال الكلوروفورم كمصدر وحيد للكربون.

كذلك بينت النتائج إلى نمو البكتيريا المعزولة على مركب الفينول لنوعي (Watanabe et al., 1998; Shimp and Pfaender, 1987) والتي النمو بشكل ممتاز، وهذا يتفق مع دراسة (Watanabe et al., 1998; Shimp and Pfaender, 1987) والتي ذكرت بأن هناك أنواع من البكتيريا بمكنها استغلال الفينول كمصدر وحيد للكربون، وأما نشاط البكتيريا على مركب الهكسان فان خمس أنواع وهي (W1cb, W2Ca, W3Ba, W3C, W4Aa) قد أعطت نمو بشكل ممتاز، وهذا ينطبق مع دراسة فان خمس أنواع وهي المحسان كمصدر وحيد للكربون، وأما النمو على مركب الاوكتان فإن عزلة واحدة فقط (W3Ba) أعطت نمو ممتاز، وكذلك لوحظ أن نمو أربع عزلات للكربون، وأما النمو على مركب الاوكتان فإن عزلة واحدة فقط (W1cb, W3Ba) أعطت نمو ممتاز وهذا ينطبق مع دراسة . Liu et al. للوريان تيترا كلورايد (W1cb, W3Ba, W3C, W4Aa) أعطت نمو ممتاز وهذا ينطبق مع دراسة . (2009) والتي أثبت فيها نمو بكتيريا معينة على الأوكتان وكربون تيترا كلورايد.

ولقد بينت التجارب قدرة واعدة للبكتيريا المعزولة والمنتقاة على التحليل الحيوي للهيدروكربونات ولأن هدفنا النهائي هو اختيار البكتيريا المعزولة التي لها القدرة على استغلال الهيدروكربونات، فقد خضعت البكتيريا المعزولة والمنتقاة لإختبار إضافي في وسط البيزل يحتوي على $(v/v)^{0}$ من النفط الخام.

إن نمو سلالة بكتيريا W2Aa يتسم بمرحلة نمو ابتدائية سريعة في أول فترة الحضانة، وبينت هذه السلالة نمو حتى نماية فترة نماية الحضانة 30 يوم، ومعدل نمو سلالة W2Ca اتسم بمرحلة نمو ابتدائية سريعة وتعتبر أكثر كثافة في النمو مقارنة بباقي العزلات حيث استمر نموها حتى نماية التجربة، أما معدل نمو سلالات W3Ba, W3C استمر في النمو حتى نماية زمن اجراء الإختبار، ومعدل نمو سلالة W4Aa لوحظ نموه حتى 21 يوم ثم بدأ في الإنحدار. ولاشك بأن هناك العديد من العوامل المختلفة التي ساهمت في موت البكتيريا ولكن أهمها هي نضوب المواد المغذية الأساسية وتراكم النواتج الكابحة مثل الأحماض (Pelczar et al., 1982)، ونلاحظ بأن أغلب النموات بدأت خلال 24 ساعة من الحضانة وأغلب النموات استمرت في النمو وقيامها بتكسير النفط الخام، في حين أن عزلة واحدة فقط بدأت في الانحدار بعد 21 يوم من الحضانة.

محمد وشعيب، 2021

كما لوحظ في هذه الدراسة أنه خلال الأكسدة الهوائية للنفط الخام قلت قيمة pH البيئة بمقدار 0.8 (0.3 (0.8 (0.7 وحيث أن W2Aa, W2Ca, W3Ba, W3C, W4Aa على التوالي خلال 0.8 يوم من الحضانة. وحيث أن pH البيئة مهم في تحديد مسار التسلسل الأيضي، وأن زيادة أو نقص pH البيئة يشير إلى إنتاج المواد الايضية القاعدية والحامضية، ولقد اكتشفت دراسات سابقة إنتاج الحمض الدهني من الهيدروكربونات باستخدام النقص في pH كمعيار لتشكل الحمض (Abbot and Gledhi, 1971) وتشير كذلك دراسات سابقة إلى أن نقص اله pH وتغيره للوسط الحامضي يعتبر كمؤشر على حدوث التحلل الحيوي (Reisfeid et al.,1972; Leahy and Colwell, 1990). وكذلك يتفق مع دراسة (Singh et al., 2003) والتي أشارت إلى نقص اله pH أثناء تجربة التحلل الحيوي من 7.7 إلى 6.7 في أحد العزلات و4.7 في عزلة أخرى.

إن استغلال مركبات النفط الخام من قبل العزلات تلاه التحليل بالفصل بالغاز، والنقص في نسبة الوزن لجزء النفط الخام بعد 14 يوم من الحضانة وبعد 30 يوم من الحضانة للأنواع الخمسة المعزولة والمنتقاة. حيث أن معدل ونطاق التحليل الحيوي فسر على أساس الفصل بالغاز GC للنفط الخام المتبقي في خمس مزارع والتي بحا 1% من النفط الخام خلال 14 يوم و 30 يوم من التحضين وكان أعلى نسبة تحلل (47.61%) والتي قامت بحا التحضين وكان أعلى نسبة تحلل (47.61%) والتي قامت بحا بكتيريا GC لوظيفة ركيزة النفط، لتحديد قابلية أنواع مختلفة من النفط للتحلل الحيوي : W2Aa, W3C وقد استخدم التحليل الكروماتوغرافي بالغاز GC لوظيفة ركيزة النفط، لتحديد قابلية أنواع مختلفة من النفط للتحلل الحيوي : Mandal et al., 2012; Zahed et al., 2010; Saieb and Elghazwani, 2008; and Fidorak and Westlake, 1981)

5. الاستنتاجات

أهم النتائج المستخلصة من الدراسة هو؛ نمو العزلات بطريقة مباشرة على وسط البيزل (Basal Media) السائل والمدعم بـ المستخلصة من النفط الخام والذي يظهر نشاطها وقدرتما على النمو، وكذلك قدرة العزلات من النمو على عشر مركبات هيدروكربونية مختلفة (البنزين والتولوين والزايلين والفينول والهكسان والاوكتان والسايكلوهكسان وكربون تيترا كلورايد والكلوروفورم والنفثالين). كما أعطت نتائج (GC) تحلل (GC) تحلل (W2Aa, W3C) بفعل بكتيريا W2Aa, W3C، وكذلك تحلل (66.66%) بفعل بكتيريا W3Ba بكتيريا والتي قامت بها بكتيريا وعليه نستنج بأن السلالة البكتيرية (W3Ba المخترية (Vibrio alginolyticus) دات كفاءة عالية في التكسير البيولوجي للنفط الخام بنسبة قدرة عالية وبذلك يمكن استخدامها في المعالجة الحيوية للتلوث بالنفط الخام في مياه البحر، بالإضافة إلى أن هذه الدراسة بينت قدرة عالية وجيدة في التحلل الحيوي للمركبات الهيدروكربونية بواسطة بكتيرية معزولة من بيئات ملوثة بالنفط الخام.

6. التوصيات

- توصي هذه الدراسة بإمكانية استخدام السلالات البكتيرية التي تم عزلها وتعريفها في معالجة التلوث النفطي في البيئة المعتام المعت

دراسة التحلل الحيوي للنفط الخام بواسطة عزلات بكتيرية معزولة من ميناء الحريقة

- دعم الدراسات والأبحاث في مجال معالجة التلوث النفطي ومشتقاته في مناطق إنتاج وتصدير النفط الخام مع دراسة العوامل البيئية (درجة الحرارة، توفر الأكسجين، pH، المغذيات) المؤثرة والمحفزة في عملية التحلل الحيوى للتلوث النفطي.
- استخدام استنتاجات وتوصيات هذه الدراسة في حيز التنفيذ ومن ضمن خطط واستراتيجيات من شانها حماية البيئة البحرية والمحافظة عليها من التلوث النفطي.
- تنفيذ القانون رقم (15) لسنة (2003م)، والمتعلق بحماية البيئة البحرية في الفصل الثالث، وخاصة المواد (22، 23، 28) . حيث أن الدولة الليبية تقدم التسهيلات للسفن في الموانئ الرئيسية، ولهذا بالمقابل يجب على البواخر الالتزام بحماية البيئة البحرية بشكل عام، والتقيد بالقوانين المحلية والاتفاقات الدولية في مجال حماية البيئة البحرية، أو التعرض إلى غرامات مالية وعقوبات.
 - توصى الدراسة ببرنامج مراقبة مستمرة للساحل الليبي.
- يجب أن تجهز جميع موانئ الشحن والموانئ النفطية بالمعدات والخزانات اللازمة لاستقبال مياه الاتزان، أو المياه المتخلفة عن غسيل الخزانات الخاصة بناقلات الزيت وناقلات المواد السائلة الضارة، والمخلفات والنفايات والرواسب الزيتية، والمزيج الزيتي ومياه الصرف الصحى من الوسائل الراسية بالميناء، وكذلك سفن الشحن الأخرى.

المراجع

أولاً: المراجع باللغة العربية

ابورويضة، عبد الله (1978). بروتين النفط. منشورات معهد الإنماء العربي، طرابلس، ليبيا.

بن الصادق، عبد الوهاب رجب هاشم (2002). *الأمن البيئي.* النشر العلمي والمطابع، جامعة الملك سعود، الرياض، السعودية.

البياتي، رضا إبراهيم؛ ضباب، جميل موسى (2005). استحداث طريق استخلاص كروماتوغرافيا الغاز لفصل وتقدير بعض المركبات الهيدروكربونية في النياقي، رضا إبراهيم؛ ضباب، جميل موسى (2005). استحداث طريق استخلاص كروماتوغرافيا الغاز لفصل وتقدير بعض المركبات الهيدروكربونية في

عبد الحميد، زيدان هندي وعبدالمجيد، محمد إبراهيم (1996). الملوثات الكيميائية والبيئة. الدار العربية للنشر والتوزيع، القاهرة، مصر.

عويد، ياسين حسين (2008). الفعل الانفرادي والمشترك لبعض العزلات البكتيرية في التحلل الحيوي لنفط خام القيارة. مجلة علوم الرافدين، 19: 101–101.

ثانياً: المراجع باللغة الإنجليزية

- Abbot B.J. and Gledhi W.E. (1971). The extracellular accumulation of metabolic products by hydrocarbon degrading microorganisms. *Adv. Appl. Microbiol.*, 14: 249-388.
- Arvin E., Jensen B.K., and Gundersen A.T. (1989). Substrate interactions guring aerobic biodegradation of benzene. *Appl. Environ. Micrbiol.*, 55(12): 3221-3225.
- Atlas R.M. (1981). Microbial degradation of petroleum hydrocarbons: an environmental perspective. *Microbial. Rev.*, 45(1): 180-209.
- Atlas R.M. (1991). Microbial hydrocarbon degradation bioremediation of spill. *Journal of Chemical Technology*, & *Biotechnology*, 52(2): 149-156.

- Cerniglia C.E. (1984). Microbial Metabolism of Polycyclic Aromatic Hydrocarbons. *Adv. Appl. Microbiol.*, 30: 31-71.
- Chakrabarty A.M. (1972). Genetic Basis of the Biodegradation of SaliCylate in Pseudomonas. *J. of Bacteriology*, 112(2): 815-823.
- Chakrabarty R. and Coates J.D. (2004). Anaerobic degradation of monoaromatic hydrocarbons. *Appl. Microbiol. Biotechnol.*, 64(4): 437-446.
- Dey K. and Roy P. (2011). Degradation of chloroform by immobilized cells of Bacillus sp. in calcium alginate beads. *Biotechnol Lett.*, 33(6): 1101-1105.
- Etoumi A. (2006). Microbial treatment of waxy crude oils for mitigation of wax precipitation. *Journal of Petroleum Science and Engineering*, 55(1-2): 111-121.
- Fidorak P.M. and Westlake D.W.S. (1981). Microbial degradation of aromatic and saturates in prudhose oil as derermined by glass capillary gas chromatography. *Canadian Journal of Microbiology*, 27(4): 432-443.
- Hohener P., Duwig C., Pasteris G., Kaufmann K., Dakhel N., and Harms H. (2003). Biodegradation of petroleum hydrocarbon vapors: laboratory studies on rates and kinetics in unsaturated alluvial sand. *J. Contam. Hydrol.*, 66(1-2): 93-115.
- Hollaway S.L., Faw G.M., and Sizemore R.K. (1980). The bacterial community composition of an active oil field in the Northwestern Gulf of Mexico. *Marine Pollution Bulletin*, 11(6): 153-156.
- Jones J., Knight M., and Byron J.A. (1970). Effect of gross population by kerosene hydrocarbons on the microflora of a moorland soil. *Nature*, 227(5263): 1166-1166.
- Kafilzadeh F., Rafiee S., and Tahery Y. (2011). Evaluation of Bioremediation of naphthalene using native bacteria isolated from oil contaminated soils in Iran. *Annals of Biological Research*, 2(6): 610-616.
- Kim J.M., Le N.T., Chung B.S., Park J.H., Bae J., Madsen E.L., and Jeon C.O. (2008). Influence of Soil Components on the Biodegradation of Benzene, Toluene, Ethylbenzene, and Xylenes by the Newly Isolated Bacterium Pseudoxanthomonas spadix BD-a59. *Appl. Environ. Microbiol.*, 74(23): 7313-7320.
- Leahy J.C. and Colwell R.P. (1990). Microbial degradation of hydrocarbons in the environment. *Microbial Rev.*, 54(3): 305-315.
- Lee E. and Cho K. (2008). Characterization of cyclohexane and hexane degradation by Rhodococcus sp. EC1. *Chemosphere*, 71(9): 1738-1744.
- Lee E., Hong S.H., Oh M.H., and Lim J.S. (2011). Characterization biodegradation of Benzene, Toluene, Ethylbenzene, and Xylenes by the Newly Isolated Bacterium Pseudomonas putida AY-10 in Rhizosphere of Wastewater Treatment Reed. *Int. Proc. Chem. Biol. Environ. Eng.*, 20: 445-743.
- Liu C.W., Chang W.N., and Liu H.S. (2009). Bioremediation of n-alkanes and the formation of biofloccules by Rhodococcus erythropolis NTU-1 under various saline conditions and sea water. *Biochemical Engineering Journal*, 45(1): 69-75.
- Mandal A.K., Sarma P.M., Singh B., Jeyaseelan C.P., Channashettar V.A., Lai B., and Datta J. (2012). Bioremediation: An Environment Friendly Sustainable Biotechnological Solution for Remediation of Petroleeum Hydrocarbon Contaminated Waste. *ARPN Journal of Science and Technology*, 2(8): 2225-7217.

دراسة التحلل الحيوي للنفط الخام بواسطة عزلات بكتيرية معزولة من ميناء الحريقة

- Mazzeo D.E.C., Levy C.E., Angelis D.F., and Marin-Morales M.A. (2010). BTEX biodegradation by bacteria from effluents of petroleum refinery. *Sci. Total Environ.*, 408(20): 4334-4340.
- Pelczar M., Reid R., and Chan E. (1982). Microbiology. McGraw-Hill publishing company Ltd.
- Phillips G.J. and Stewart J.E. (1974). Distribution of hydrocarbon utilizing bacteria in Northwestern Atlantic waters and coastal sediments. *Canadian Journal of Microbiology*, 20(7): 955-962.
- Pinholt Y., Struwe S., and Kjoller A. (1979). Microbial changes during oil decomposition in soil. *Echography*, 2(3): 195-200.
- Prince R.C., Elmendorf D.L., Lute J.R., Hsu C.S., Haith C.E., Senius J.D and Dechert G.J. (1994). 17(alpha) (H), 21(beta) (H)-Hopane as aconserved internal marker for estimating the biodegradation of crude oil. *Environ. Scin. Technol.*, 28(1): 142-145.
- Reisfeid A., Rosenberg E., and Gutnick D. (1972). Microbial degradation of crude oil: factors affecting the dispersion in sea water by mixed and pure cultures. *Appl. Microbiol.* 24(3): 363-368.
- Saieb F.M. and Elghazawani A.H. (2008). Isolation and Identification of Bacteria in Sarir Refinery Wastewater in Libya. *Delta Journal of Science*, 33(1): 10-13.
- Sardessai Y.N. and Bhosle S. (2004). Industrial potential of organic solvent tolerant bacteria. *Biotechnol. Prog.*, 20(3): 655-660.
- Shennan J.L. (2006). Utilisation of C2–C4 gaseous hydrocarbons and isoprene by microorganisms. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 81(3): 237-256
- Shimp R.J. and Pfaender F.K. (1987). Effect of adaptation to phenol on biodegradation of monosubstituted phenols by aquatic microbial communities. *Applied and Environmental Microbiology*, 53(7): 1496-1499.
- Singh B.K., Walker A., Morgan J.A.W., and Wright D.J. (2003). Role of Soil pH in the Development of Enhanced Biodegradation of Fenamiphos. *Appl. Environ. Microbiol.*, 69(12): 7035-7043.
- Smits T.H.M., Witholt B., and Beilen J.B.V.(2003). Functional characterization of genes involved in alkanes oxidation by Pseudomonas aeruginosa. *Antonie Van Leeuwenhoek*, 84(3):193-200.
- Sugaya K., Nakayama O., Hinata N., Kamekura K., Ito A., Yamagiwa K., and Ohkawa A. (2001). Biodegradation of quinoline in crude oil. *Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology*, 76(6): 603-611.
- Vidali M. (2001). Bioremediation an overview. Pure Appl. Chem., 73: 1163-1172.
- Watanabe K., Teramoto M., Futamata H., and Harayama S. (1998). Molecular Detection, Isolation, and Physiological Characterization of Functionally Dominant Phenol-Degrading Bacteria in Activated Sludge. *Applied and Environmental Microbiology*, 64(11): 4396-4402.
- Yi T., Lee E., Ahn Y.G., Hwang G., and Cho K. (2011). Novel biodegradation pathways of cyclohexane by Rhodococcus sp. EC1. *Journal of Hazardous Materials*, 191(1-3): 393–396.
- Zahed M.A., Abdulaziz H., Isa M.H., Mohajeri L., and Mohajeri S. (2010). Optimal Conditions for Bioremediation of Oily Seawater. *Bioresource Technology*, 101(24): 9455-9460.