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Abstract

There are two methods , often used to produce examples of algebraic and
combinatorial structures . One of these methods begins with at least one
example of the desired structure at hand and then constructs further
structures of a like kind . We call such a construction method recursive.
Another method (or methods) is to generate the desired structure simply
after certain parameters regarding it have been specified . We shall call such
a method of construction an ab initio method .

Hadamard matrices are algebraic structures in the sense that they form
an important subclass of the class of matrices and hence must conform to all
the algebraic rules obeyed by matrices under the usual operations of
addition and multiplication . On the other hand , Hadamard matrices are
combinatorial structures as well since the entries +1 and -1 of which the
matrix consists must follow certain patterns . Thus one expects that one
should be able to utilize both type of constructions methods , recursive and
ab initio , to construct Hadamard matrices . This is indeed the case and in
this paper we review some of these construction methods for Hadamard
matrices .

In the second part we will introduce the concept of the Kronecker
product and develop a recursive construction method for constructing
Hadamard matrices based on it . Two important ab initio methods are
discussed in the fourth part of this paper. These methods are due to Paley
(1933) and is based on Galois fields . Hence some Galois field basics are
presented in the third part also.

Keywords : Hadamard Matrix, Kronecker product, Galois fields.

1. Introduction
A (-1,1) - matrix is a matrix whose only entries are the numbers -1 or 1 .
In this paper for the most part we will be interested in special (-1,1)-
matrices called Hadamard matrices .
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A Hadamard matrix of order n is an nxn (-1,1)- matrix H, satisfying
HH=HH=n]J, where H'denotes the transpose of H and J, is the
identity matrix of order n. If H is a Hadamard matrix, it follows from the
definition that the set of row vectors of H, as well as, the set of column
vectors of H form mutually orthogonal sets . The reader is referred to [6].

2. Construction of Hadamard Matrices Based on The
Kronecker Product

In this part we present the construction of Hadamard matrices employing
the Kronecker product . This construction is recursive and requires at least
one Hadamard matrix at hand in order to utilize it . It is , therefore , most
useful when employed in conjunction with some of the other techniques for
constructing Hadamard matrices to be developed later . We begin by
introducing the concept of the Kronecker product of matrices and some of
its basic properties .

Definition :1fA=(gq;) is a pxq matrix and B =(p;)is a rxs matrix , then

their Kronecker product A® B is the prxgs matrix given by

1 1 2 4
Example 2.1 :1f A= , B= ,
] - ] 2x2 - 5 3 2x2

2 4 2 4
-5 3 -5 3
then AR®B=
2 4 -2 -4

-5 3 5 -3
The basic properties concerning how the Kronecker product ® relates to

the matrix operations of addition , multiplication , scalar multiplication and
transpose are given in the following theorem .

Theorem 2.1 :Let A=(q;) be apxq matrix andB=(p;) be a rxs
matrix. The Kronecker product A ® B is a prxgs matrix with the following

properties :
1) a(A®B) =(a A)®B = A®(a B) for any real number «,
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i) (A4,1t4,)®B =(4,®B) + (4,®B)and
A®(B;t+ B;) = (A®B;) + (A®B,),
i) (4, 9B )(A:®B,) = A4, 4,® B, B, , where the matrices 4, and B;
respectively are compatible for multiplication ,
iv) (A®B) = A'®B',
v) (A®B)®C = A®(B® () for any matrix C,
vi) A®B)' = 4'® B’ ,if 4/ and B exist.
Proof :We will prove property (iv) , and we refer to a standard text in
linear algebra for the rest .

Since
) > o )
a,B a,B . .. nqu I”B (:lB anB
a,,B a,,B . . . a, B a.B" a.B' . . . a.B’
21 22 29 12 22 22
ABB-= {ASB)' = =A'@B
a, B ”y:B L. (IP{!B ay, B’ ay, B . . . aB'

prxqs 79 xpr

(I
The relationship between the determinant of the Kronecker product of
square matrices and the determinant of individual matrices is given in the
following :

Theorem 2.2 : For any two square matrices 4 of order m and B of order
n, det(A® B)=/[det(4)]" [det(B)]" .
Proof :We prove the theorem for the case when A has order m=2.

ain  an

az a»

Then A= ( J Ifall g; =0 then the theorem is clearly true . Hence
2x2

, without loss of generality suppose that 4,,# 0. Then

Cl]]B Cl]ZB

A®B= [ ] Further , we may also assume without loss of

asj B az B
generality that det(B) # 0. Then by [6, Theorem 3.1],

det (A® B)=[det(a;, B)] [det(a»B - aB(ayB)" ai;B)]
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=/[det(a; B)] [det(ax»B - axalianB)]

=det/ a;; B(ax B- asaiia;:B)]

=det/ (a;axz- azarn) B'] = (anasx- axap) det( B’)
=det /4 ]"det[ B’ ] = [det(4)]" [ det(B) ]’ and the theorem

is proved for the casem =2 . O

From the viewpoint of Hadamard matrices , the properties of the
Kronecker product immediately imply the following result :

Theorem 2.3 :If H, and FH, are Hadamard matrices of orders p; andy,
respectively , then /7, ® f, is a Hadamard matrix of order s, z,.
Proof : Let H, and K, be a Hadamard matrices of orders 5, and 5,

respectively . Then
(H®H,) (H®H,) =(H,®H,) (HI®Hy) = HH/®H,H~»

:n11n1® n2 1,12:n1n2 Inmz‘ O

Corollary 2.1. :Since there is a Hadamard matrix of order 2 , namely

1 1
H,= ( ] then there are Hadamard matrices of order?” for every
1 -1

positive integer 7.
Proof :H,= H,®H,®....Q H,,the Kronecker product of g, with

itself extended over n factors gives the desired Hadamard matrix of order
2". O

Corollary 2.2 :1f H is a Hadamard matrix of order £k,for some
positive integer k then there is a Hadamard matrix of order 2" k for every

positive integer 7.
Proof :Let H,= H® H,., where H is a Hadamard matrix of order &,

and A, is the Hadamard matrix of order 2" given in Corollary 2.1 . Then
by Theorem 2.3, f, is a Hadamard matrix of order 2" £ .O

Example 2.2 :Let [, be the normalized Hadamard matrix of order 2 .
The matrix
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+ o+ o+

+

+ - + - . .
H,= H®H,= 1s a Hadamard matrix of order 4 .
+ o+ - -

+ - - + 4x4
By Theorem 2.3, we conclude that H,= H,® H,® H, is a Hadamard
matrix of order 64 .

Theorem 2.3 will be more helpful when we apply it to Hadamard
matrices constructed by other methods . We discuss some of these other
methods below .

3. Some Galois Field Basics

Galois fields will play an important role in the construction of Hadamard
matrices. Thus we take a closer look here at some Galois field basics
including a recipe to construct such fields . For the proofs of results stated
in this part of the paper we refer to Herstein (1996) .

Let F be a field and let n be any positive integer . For x € F' we define
nx=x+tx+x+...+x (nterms in the sum ) . A field F is said to have
characteristic m, if there exists asmallestpositive number m such that
m x =0 for all x € F'. If no such positive integer m exists then F is said to
have characteristic zero .

Let Z be the set of integers , and n=>2 be a fixed integer . For any
a,beZ,we define a=b(modn) if and only if n divides(a - ). One may
check that = is an equivalence relation on Z. For a € Z,we let [u] be the
equivalence class determined by ¥ mod n. Then

[u]={tn+a teZ } is called the residue class mod n determined by

u.
Let Zz, be the quotient set of Z under =. Then one can verify that
Z.= { [0],[1],[2],...,[n-1] }(i.e.Z,, consists of n residue classes) .

In the set 7, we introduce two operations, +, called addition mod n

and *, called multiplication mod n as follows :

For /[a],[b] € 7z, define [a]+,[b]=[a+b] and [a]*,[b]=[ab].
Then we can verify that (7, , +, ,*,) is a commutative ring with »
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elements, called the ring of integers mod n.In general z, is not a field .
To simplify the notation we will denote the element/c/ of Z, by c.

Lemma 3.1 : Let F bea field . Then either F' has characteristic zero( F'

is an infinite set and F contains an isomorphic copy of the rationals) or the
characteristic of F' is a prime number p ( F may be a finite or infinite set

and contains an isomorphic copy of the ring 7, ).
Lemma 3.2 : 7, isafield if and only if n is a prime number .

Let 7z, be the ring of integers mod 7. An expression of the form
J)=a *ax+ta X+ . taxt
in an indeterminate x with g, € Z, is called a polynomial over z,. The
elements g; are called the coefficients of the polynomial . Further when
ar#0 , k 1s called thedegreeof f(x), and when 4, = /1], the unit
element of 7z, , f{x) is called a monic polynomial .

Letz,/x] = { fx) : f(x)polynomial over Z, }be the set of all
polynomials over z,. Let f(x), g(x) be polynomials ingz,/x/. The
sum of fand g,denoted by f(x)+ g(x), is obtained by adding
coefficients of like powers of x. The product of f and g,denoted by
f(x) g(x), 1is obtained by term by term multiplication using the
distributive law of Z,, and then gathering together terms of like powers
of x. Under these operations Z,/x/ is a commutative ring with unit ,
called the ring of polynomials over z,.We will be interested in the ring
Z,[x], where p is a prime number so that 7, is a field . In all that
follows p will denote a prime number .

Theorem 3.1 :[Factor Theorem]|
Let f{x) , g(x)#0 in Z,/x], and c € Z, be given . Then

1) there exist unique g(x) and r(x) in Z,/x] such that
fx)=g(x) q(x) + r(x),where r(x) =0 or the degree of r(x) is less than
the degree of g(x). The polynomial r(x) is called the remainderand
q(x) is called the quotient ,

ii) the remainder in (i) dividing f(x) in Z,/x] by x-c is f{c).

92



Journal of Humanities and Applied Science

Let fix) , g(x)#0 in Z,[x] be given . We say g(x) divides

fx) ( gx)| fx)) if and only if f(x)=g(x) g(x) for some g¢(x) in
Z,[x] .Then g(x) is called a factor of f(x).

Theorem 3.2 : [Remainder Theorem]|
If fix)eZ,[x] and ce Z,, then x-c in Z,/[x] is a factor of f{x) if and

only if f(c)=0.

A Galois field F is a field F in which the set F has a finite number

of elements . We will denote a Galois field with s elements by writing
GF(s). By Lemma 3.2, 7, is a Galois field ( GF( p)), where p is any

prime number , consisting of p elements. Let f{x)e Z,/x]/ be given . Then
any c#0 in z, divides f{x) since f(x)=c( ¢’ f{x)). Hence any
polynomial of the form ¢ f{x) , ¢#0 in z, will be called an associate of
).

A polynomial f{x)e Z,[x] is called irreducible over 7, if and only if
the only divisors of f{x) are f{x) and its associates . Those polynomials in
Z,[x] which are irreducible over 7z, will play a key role in the

construction of Galois fields . We now record some properties of Galois
fields .

Theorem 3.3 : LetF = GF(s) be a Galois field with s elements and let
F'=F-{0}. Then
i) s=p" for some number n> 1, and some prime p.This prime p is the
characteristic of F'.
ii) 7 under the multiplication of F is a cyclic group . Hence there exists
some a € F" such that F*={ a=1,4d, d, ..., a7 } Such an
"a" which generates f" is called a primitiveelement of " .
iii) Let g(x)€ Z,[x] be an irreducible polynomial over 7z ,, where p is a
prime number and the characteristic of F'.Then g(x) divides x*'-1.
iv) x*-x is a product of all the monic irreducible polynomials over
Z,[x] of degree dividing n, where p is the prime characteristic of F
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and s=p".

v) There exists a Galois field with p" elements for any prime p.

Theorem 3.4 : Let FZ{ 0, ar a»» ---» as-l} be a GF(s), s=p"
where p is a prime number . Then the polynomial x'-x in Z,/x/
factorizes into linear factors

x-x=x(x-q;) (x-ay)...( X-a.;).

Let F be a Galois field with s= p" elements . Then an irreducible
polynomial f(x)e Z,[x] is called a primitiveirreducible polynomial if
and only if f{x) divides x"-1 for m= p"-1=s-1 but for no smaller m .
Now we give a recipe to construct a Galois field of orders,where
s=p", p isaprime number, and n>1 is an integer .
When n=1, by Lemma 3.2 the ring 7, is aGF( p) under addition and
multiplication mod p,
When n > 2, we consider the polynomial x'-x in Z,/x/, and

i) Factorize x'-x into irreducible factors over Z,/x/. Select all the
irreducible polynomials in this factorization whose degree equals 7. Let us
say there are k of them g,(x), g,(x), ..., g,(%).
ii) From the g/s in (i) select those g,(x)which are primitive . We can
develop the Galois field using any of these irreducible polynomials g,(x).
However picking a primitive g,(x) gives a better description of the field for

computational purposes . It actually provides a primitive element (a cyclic
generator) for the field . From now on we will work with primitive
irreducible polynomials .

ii1) Suppose we have chosen a primitive irreducible polynomial of degree n
from (i1). Let us call this selection g(x).If we cannot decide on a primitive

one , we can simply pick any g,(x) from (ii)

iv) Let F={ fix)ez,[x] : degree of f(x)< n-1 },i.e. F is the set of
polynomials of the form ¢ + g, x + g, x” + ...+ @, x"" with g€ 7,.
Let f,(x), f,(x) bein F.To add f,(x) and f,(x), we do term by term
addition of polynomials reducing the coefficients mod p . To multiply f',(x)
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with f,(x) we do the usual multiplication reducing the coefficients mod p .
Then we divide this product by g(x), where g(x) is chosen in (iii) , and
take the remainder as the product of f, with ', . We call this procedure of
adding and multiplying mod (' p , g(x))arithmetic.

v) The set F' defined under mod( p, g(x)) arithmetic is a Galois field of
order p". To verify this , we refer to Herstein (1996) .

Consider a Galois field GF(s) of order s, where s= p", with p an odd
prime . An element a € GF(s) is called aquadratic residue (for short QR)
if and only if there exists some b e GF(s) such that a =p’. If no such b

exists ‘a' is called a quadratic nonresidue. Note that 0 , 1 are always
quadratic residues of GF(s).

Let x be a primitive element of the multiplicative group F* = F-{0},
where F isa GF(s), s=p",
residues of F are in the set QR={ A A }

We illustrate the steps (i) - (v) by developing some examples of Galois
fields which will be useful later in this paper .

p 1s an odd prime . Then all the quadratic

Example 3.1 : We construct F' = GF(7). Since 7 is a prime number we
take F=z,={0,1,2,3,4,5,6} under mod 7 addition and
multiplication . The addition and multiplication tables are given below :

+ 10123456 % 0123456
010123456 0 10000000
1 (1234560 1 |0123456
2 12345601 2 10246135
313456012 310362514
4 14560123 4 10415263
515601234 5 10531642
6 6012345 6 0654321

Note that 3 is a primitive element of F' and
orR={0,3, 3,3 |={0,1,24}
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Example 3.2 : We construct GF(9). Note that 9= 3, so the base prime
is 3 and the basic Galois field we work with is 7,. Factorize x’-xinto
irreducible polynomials over z;/x/ :
ox=x(xX*-D=x(xX*-D(xX'+D=x(x-Dx+1D)( ¥+ D(x+2x+2)(x*+x+2)
By Theorem 3.2.2 , the remainder theorem , the polynomials g,(x)=x"+1,
g,(x)=x"*+2x+2, and g,(x)=x"+x+2 are irreducible. Of these the
polynomial g,(x) is not primitive since x”+/|x*- 1. From the factorization
of x’-x it is clear the polynomials g,(x) and g,(x) are both primitive
irreducible polynomials . We will work with g,(x).

Consider the set FZ{ a *ax : a »ar€Z;[x] } under

mod( 3, g,(x)) arithmetic . Then F has the nine elements as follows :

a =0 , q=0 0 a=1 , a=0 ]
a, =1 X, a, =1 c I+x
a=2 2x a;=2 1+2x

a =2 , a,=0 2
a;=1  2+x

a;=2 2+2x
By Theorem 3.3 (i1),
F'=F-{0)={1,x,1+x,2x,1+2x,2,2+x ,2+2x | is a
cyclic group under multiplication , and x is a primitive element (generator)
for F°. To verify this we calculate sucessive powers of x, using
mod( 3, g,(x)) arithmetic to get:
0, X"=1, x'=x, ¥’=x+1 (replacingx’byx+1),
Y= ¥+ x= x+I+x= 2x+1,
x'= xQ2x+D)= 25+ x= 2x+2+x=2,
X=2x,x"=2x"=2(x+1)= 2x+2,
X=2x"+2x=2x+2+2x=x+2,
¥*= x¥’+2x= x+1+2x= 1. Thus the powers of x generate ", and x
is a primitive element of F".
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Let us summarize our construction . The elements of /' are
F= 0,1,x,x2,x3,x4,x5,x6,x7 0,1, x,x 1,2x 1,2,2x,2x 2,x 2

The mod( 3, g,(x)) arithmetic tables , one for addition and the other for
multiplication are as follows :

+3 0 1 x x+1 2x+1 2 2x 2x+2 x+2
0 0 1 X x+1 2x+1 2 2x 2x+2 x+2
1 1 2 x+1 x+2 2x+2 0 2x+1 2x X
X X x+1 2x 2x+1 1 x+2 O 2 2x+2
x+1 x+1 x+2 2x+1 2x+2 2 X 1 0 2x
2x+1 | 2x+1 2x+2 1 2 x+2  2x x+1 X 0
2 2 0 x+2 x 2x I 2x+2 2x+1 x+1
2x 2x  2x+1 O 1 x+1 2x+2 x x+2 2
2x+2 | 2x+2 2x 2 0 X 2x+1 x+2 x+1 1
X+2 Xx+2 X 2x+2 2x 0 x+1 2 1 2x+1
+3,%;3
0 1 X x+1 2x+1 2 2x 2x+2  x+2
0 0 0 0 0 0 0 0 0 0
1 0 1 X x+1 2x+1 2 2x 2x+2  x+2
X 0 X x+1 2x+1 2 2x  2x+2  x+2 1
x+1 0 x+1 2x+1 2 2x 2x+2 x+2 1 X
2x+1 0 2x+1 2 2x  2x+2 x+2 1 X x+1
2 0 2 2x  2x+2 x+2 1 X x+1 2x+1
2x 0 2x 2x+2 x+2 1 X x+1 2x+1 2
2x+2 |1 0 2x+2 x+2 1 X x+1 2x+1 2 2x
X+2 0 x+2 1 X x+1  2x+1 2 2x  2x+2

From the above presentation the quadratic residue set in GF(9) is
OR={ 0, ¥, ¥, x'. x }={ 0,1, x+1,2, 2x+2 } .
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Example 3.3 : We construct F = GF(11). Since 11 is a prime number
wetake F=7,={0,1,2,3,4,5,6,7,8,9,10 } under mod 11

arithmetic . The mod 11 addition and multiplication tables are as
follows:

4, 012345678910 %, |01 2345678910
0 012345678910 0 000O0O0O0OO0OO0OO0OO0OO 0
1 1 23456789 100 1 01 2345678910
2 234567 89 10 01 2 0246 8101 357 9
3 34567 89 1001 2 3 0369147 102 5 8
4 4567891001 2 3 4 04815926 103 7
5 56 7891001 2 3 4 5 05104 9 38271 6
6 6 78 9 10 01 2 3 45 6 0617 2 8394105
7 789 10 01 2 3 456 7 07 3106 2 9518 4
8 |89 1001 234567 8 10852107 419 6 3
9 [9 1001 2345678 9 1097531108 6 4 2
10 1001 234567 89 10 {0109 8 7 6 5 4 3 2 1
Note that 2 is a primitive element in GF(11). Thus

OR=10,2, 2,2, 2,2 }={0,1,3,4,5,9}.
Example 3.4 :To construct F=GF(19), since 19 is a prime number
then we take
F=z,={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18 }

under mod 19 arithmetic . The addition and multiplication tables may be
constructed on the same principles as in Example 3.2.3 . Note that 3 is a
primitive element mod 19 and the set of quadratic residues in F is
OR={1,4,5,6,7,9,11,16,17 }.

Example 3.5 :Suppose that the problem is to determine the quadratic
residues and quadratic nonresidues in the Galois field GF(25).

1) First we determine a quadratic primitive irreducible polynomial over

Zs. To this end we take the factor x°+/ in the factorization

x-1=(x"-1)(x”+1), and factorize it into irreducible factors over Z;(

remember that the arithmetic on the coefficients is done mod 5) :
x12+]:(x4)3+13:(x4+])(x8_x4+1) )

98




Journal of Humanities and Applied Science

Now
I HI=(+2)(x°+3),
WX = (X 4) (25 ) = (X2 ) (K425 H)
X2 A= (P 2) - = (P2 (P -x+2)
X2 4=(+3)-2x ) =(F T 2x+3)(x-2x+3)
Thus
XPHI=(CH2) () (T x+2) (7 -x+2) (K +2x+3)(x*-2x+3) .

ii) Now x* +1=(x’+2)(x’+3) divides x’-1 .Hence neither g, (x)=x"+2
nor g,(x)=x"+3 are primitive irreducible polynomials over 7Z;. However,
each of g,x)=x"+x+2, g,x)=x"-x+2, g,(x)=x"+2x+3 or
g,(x)=x"-2x+3 are primitive irreducible polynomials over Z;. Any of
these may be used to develop GF(25)giving both a multiplicative and
additive representation to the elements of GF(25). If either g,(x) or g,(x)is

used we would obtain the additive representations of the elements of
GF(25) undermod( 5, g,(x)) arithmetic,i =1, 2,but not the multiplicative

representation .
iii) Suppose we select g(x)=g,(x)=x’+x+2 to develop GF(25). Then
under mod (5, x’+x+2) arithmetic the set
F={x"; 0223} U {0}
={ ax+b : a,beygz;s }

is a Galois field of order 25 . Below we tabulate the elements of /' in their
multiplicative and additive form :

I x X ¥ x* ¥ x° ¥ %8 ¥’ x10
0 1 x 4x 3 4x 2 3x 2 4x 4 2 2x 3x 1 3x 4 x 4
(RN E R N 6 178 19 200 2 2 23

3x 34 4x x 2 x 3 2x 3x 1 3 3x 2x 4 2x 1 4x 1 2x 2

iv) From the table in (iii): the quadratic residues in GF(25) is the set
OR={0,1,4x+3,3x+2,2,3x+1, x+4, 4, x+2,2x+3,3, 2x+4, 4x+1 }.
The quadratic nonresidues in GF(25) is the set

{ x, 4x+2, 4x+4, 2x, 3x+4, 3x+3, 4x, x+3, x+1, 3x, 2x+1, 2x+2 }
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Remarks
a) It is interesting to note that in Example 3.5, 2 and 3 are quadratic
nonresidues in Z; = GF(5) but are quadratic residues in GF(25).

(p’-p)

b) One can establish that there are exactly monic irreducible

quadratic polynomials over 7, , p a prime . For the case p =5, there

(25-5)

are thus = 10 monic irreducible quadratic polynomials over

Zs. Six of these are given in (ii) of Example 3.5 . The remaining four
of these monic irreducible quadratic polynomials appear as factors of
xIZ -1
XP-1=(x"-D(x°+1)
=(x-DEx+DE+2)(x+3) (X +x+D(x-x+D(xX*+2x+4)(x*-2x+4) .
Of course none of these four monic irreducible quadratic polynomials are
primitive since each divides x"-1 .

4. Paley's Constructions

Firstly, we have shown that for the even prime p=2and any positive
integer ka Hadamard matrix of order n= 2" may be constructed by

1 1
repeatedly taking the Kronecker product of AH,= [ )with itself &
1 -1
times . This raises the question of the construction of Hadamard matrices
whose order n is related to an odd prime power. In this connection Paley
(1933) offered the following two constructions :

(P1) a Hadamard matrix of order n =s+/ can be constructed where s is
a prime power ,say s=p’, p aprimeand s=3(mod4).
(P2) a Hadamard matrix of order n=2(s+1) can be constructed, where
s= p"is a power of a prime p and s =7(mod4).

The purpose of this part is to develop and present the Paley

constructions outlined in (P1) and (P2) . Both involve the use of Galois
fields GF(s) . Unlike the Kronecker product construction which requires at

least one pre-existing Hadamard matrix to implement it , the Paley
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construction produces a Hadamard matrix once the order of the matrix is
specified as in (P1) or (P2) .

The following notation and setting will be used in the formulation of
the results below. Let F = GF(s) be a Galois field of order s where s = p" and
pis an odd prime number. Let H ={I-1} be the two element
multiplicative subgroup of the multiplicative group of the nonzero real
numbers . Recall that the set of nonzero elements of ', call it ", is a cyclic
group under multiplication . The following mapping y ,known as a
character ,and some of its properties will be helpful in detailing the Paley
constructions : y - F~ — H is the mapping defined by

{ 1, aisaquadratic residuein F~ |
x(@)=
-1, a is a quadratic nonresiduein F~ .
Lemma 4.1 : The character y:F — His a group homomorphism
between the two multiplicative groups .
Proof : Note that the product of two nonzero quadratic residues or the

product of two quadratic nonresidues is a quadratic residue , whereas the
product of a nonzero quadratic residue and a quadratic nonresidue is a
quadratic nonresidue . From this it is immediate that y(a b) = y(a) y(b) for

all a, bin F"and the lemma is established. O

. +1 . . -1
Corollary 4.1 :InF there are precnselySTquadratlc residues andST

quadratic nonresidues . Moreover Z x(@)=0 .

aefr"
Proof :From Lemma 4.1 , the kernel of y consists of the quadratic
residues in f"and the only other coset of y consists of the quadratic
F'|=s-1,it follows that 7" has

nonresidues . Since the cardinality of 7~ ,
s-1 . . s-1 . . .
Tquadratlc residues and Tquadratlc nonresidues . Since the zero

element 0 inFis also a quadratic residue the total number of quadratic

: . . s+l . .
residues in F 1ss7and the corollary is established . O
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Lemma 4.2

i) Whens= p"=1(mod4)then -1 isa quadratic residue in F".

ii) Whens= p"=3(mod 4)then -1 is a quadratic nonresidue in F .
Proof :Let x be a primitive element (generator) of the cyclic group F*.
Since the order of F* is s-1 we conclude that »*/=7. Hence
(x"P?-D(x“"?+1)=0. Since F is a field and the order of x is s-1 we
conclude that x*”?+1=0 orx*"?=-1.Whens =1(mod4)thens=4k+1
for some integer k.Then x®"?=x*=(x*)=-1 and -1 is a quadratic
residue establishing (i) . When s=3(mod4) then s=4m+3 for some

integer m.Then x*"?=y""=_-1 and x is a quadratic nonresidue

establishing (ii) . O

Corollary 4.2

i) Whens = p"=1(mod4)then y(-a)= y(a) forall a inf".

ii) Whens = p"=3(mod 4)then y(-a)=-y(a)forall a inf".

Proof :Using Lemma 4.1 , for any aeFwe have

y(-a)= y(-)(@)= y(-1)y(a). When s=1(mod4) , y(-1)=1 and when
s=3(mod4) , y(-1)=-1 by Lemma 4.2 and the definition of y . From this

both (i) and (ii) follow completing the proof . O

In the following it will be useful to extend the definition of the
character y to all of F by placing y(0)=0,where the first 0 is the zero

element of F' and the second zero is the real number 0 . With this extended
definition we have y as a map from F to the set{-1,0,1}. The following

lemma will be most helpful in establishing our first main result .

Lemma 4.3 .'z;((b))((b+c)=-l,ifc¢0.

beF

Proof : x(0) y(0+c)=0 .SinceFis a field , whenb=0 ,p” exists .
Letz=p"'(b+c).Thenz #0whenb #-c,andz is the uniqueelement inF
such that bz=b+c.LetK={ z=p'(b+c) :beF ,b#-c }.We note
that K = F*-{1} ,where 1 is the unit element of . Note thatp”’(b+c)# I
for anyb € ', for otherwise b+c=5b from which ¢=0,a contradiction .
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HenceK ¢ F"-{1}.Next, letxe F"-{I1}. Defineb=c(x-1)" . Thenb =0,
for otherwise ¢=0 or x=1,neither of which is the case . Moreover
plb+c)=¢"'(x-Dfc(x-1)"+c]=1+(x-1)=x from which we conclude
thatxe K .Hence F'-{1}c K .InallK = F"- {1} .Now ,

D x)y(b+c)=> y(b) y(b+c)= > x(b)x(bz) since

beF befF" zef {1}

K=F"-{1}. By Lemma 4.1, y(bz)= y(b) y(z)and thus
D) y(btc)= > [x®)] x@) = > x@=Y x(2)-x(1)=0-1=-1,

beF zep {1} ZINF*-{1} zef"

using Corollary 4.1 . O

A real matrix M of order n is called skewsymmetric if and only if

M =-M'".Tt is clear that any skew symmetric matrix has each of its
diagonal entries equal to zero. Recall that a Hadamard matrix H of order
n is called askew Hadamard matrix if and only if H =1,+S,where S

is a skew symmetric matrix . Clearly to obtain a skew Hadamard matrix
we need a skew symmetric matrix whose off diagonal entries are +1 or -1.

We now introduce a matrix Q of orders= p" , pan odd prime , and
study its properties in the lemmas below . This matrix Q will play a crucial
role in both Paley constructions. The definition of Q is based on the Galois

field F of order s = p", pan odd prime and uses the character y defined on

F: letFZ{ O Qs Qs ovr O }be a listing of the s elements of F
withg = 0.Define
O=(q; )y : q;= x(a;-a:) (3.1)

Lemma 4.4 :The matrix Q is a matrix with entries in the set {-7,0,1}.
Whens = p"=1(mod 4) then Q is a symmetric matrix . When
s=p '=3(mod4) then Q is a skew symmetric matrix .

Proof :The first statement of the lemma follows from the definition of
the character y .
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Moreover

-¥(ai-a;), when p"=3(mod 4) ,
qij:Z(aj_ai):Z((_])(ai_aj)):
X(ai-a;), when p"=1(mod4) ,

4, when p"=3(mod4) ,

q, whenp" =1(mod4) ,

using Corollary 4.2 . This completes the proof . O

The following notation will be useful and will be employed throughout :
J e Will denote a matrix of ordermxneach of whose entries is +1 . We
simply write J when its dimension is apparent from the context.
Lemma 4.5 : Q satisfies the following :

1) QQ,:SIS_J’
1) 0J=J0=0,
Proof

i) Let Q'QO=B=(b;), then
b; = inner product of the i-th row of Q with the j-th row of O

=26],-k 9 — z;((ak—a,»);((ak—aj)=s-1ifi=j ,and equals -1
k k
ifi # jusing Lemma 4.3 and takingb = ¢, - ¢, andc = ;- ; # 0'in
that lemma . This establishes (i).
i) QJ = 0follows from )" 7(a;- ;) =0 using Corollary 4.1 . O
j

We now use the matrix Qdefined in (3.1) , to define the following
matrix which is of major importance in the Paley constructions :

( 0 - JIXSJ (32)
S =
Jsxl Q (s+1)x(s+1)

Lemma 4.6 : Lets=p" , pan odd prime , with p =3 (mod4).Then the
matrix S defined in (3.2) has the properties :

i) §'=-S,namely S is skew symmetric ,

i) SS=s7,,.

Proof
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1) This follows from Lemma 4.4 , since Q is skew symmetric when
p=3(mod4).
' 0 _]1 Xs 0 ]1 Xs s Q/
i S = B L e
]sxl Q _/sxl Q Q QQV‘]:X:
using Lemma 4.5 (i). This completes the proof . O

We are now ready to give the first Paley construction (the construction
outlined in statement (P1)) .

Theorem 4.1 : [The First Paley construction ; Paley (1933)]

Lets=p" ,pan odd prime , with p=3(mod4). Then the matrix
H. =1,.,1S, where § is defined as in (3.2) is a skew Hadamard matrix
of orders+1.

Proof
HH=1+S)+S)=1+S+S8"+S8'=1+S8-S+s],,=(st1)],,,, using
Lemma 4.6 . Hence H is a skew Hadamard matrix of orders+/. This

completes the proof. O

We illustrate Theorem 4.1 by constructing a Hadamard matrix of order
28 . This presented in the following example .

Example 4.1 :To make the presentation self contained we recall some

definitions from the second part of this paper . In addition we will require
the Remainder Theorem [Theorem 3.2] and two other theorems quoted
below ; the proofs of the latter two theorems may be found in any standard
book on abstract algebra which discusses Galois fields, for example,
Herstein (1996) .

Throughout p will denote a prime, n > / will be an integer and lets = p" .
A polynomial f{x)in the polynomial ring 7, /x/ will be called reducibleiff

Jx)=g,(x) . g,(x) for some g ez, [x] with degree g, < degree f for
i=1,2 .Otherwise fis calledirreducible. Moreover, f(x) is called monic
iff the coefficient of its highest degree term is 1 . An irreducible polynomial
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fix)inz ,[x] is called primitive iff f(x)divides the polynomial x" -/ for
m = s -1 but does not divide x" - I for any msuch that/<m<s-1 .
The importance of irreducible polynomials stems from the following :
(GF1) letg(x)in Z,[x] be any monic irreducible polynomial of degree
n,

(GF2) letF ={ fx) : fix)ez,[x] ,degree f{x)<n-1 }
Then the underlying set F under mod( p , g(x)) arithmetic is a Galois
field of orders .We write GF(s) as a shorthand for the Galois field of
ordersand it denotes the pair (F, mod( p, g(x))) where g(x) is
defined in (GF1) and F in (GF2).

Let /"= F-{0} .We have mentioned in the second part that f"is a
cyclic group under the multiplication inF . The importance of monic
irreducible primitive polynomials is due to the following :

(GF4) if the monic irreducible polynomial g(x) in (GF1) is also primitive
then the cyclic group F” is generated by the polynomial g(x)= x in F under
mod( p , g(x)) arithmetic . In fact F has ¢(s-1) generators, where ¢ is
the Eulerg- function, and F"= { X : 0<i<s-2 } .Thus ' € F’is
also a generator of f iff

t<s-1 andtis relatively prime tos- /.

The above discussion raises two questions :
Question 1: How does one find monic irreducible polynomials

g(x) inZ,[x] of degreen?
Question 2: How does one find monic irreducible primitive
polynomials in Z , /x/ of degreen ?
Let us consider the special polynomial O (x)=x"-x . An answer to both
questions can be given in terms of factorizingQ (x) inZ,/x/ . The answer
is not too satisfactory, as we shall see, because often QO (x)is very difficult

to factorize .
Theorem A :(i1) Letg(x)be any monic irreducible polynomial of degree

dividingn . Then g(x) dividesQ, (x).
(i)  The polynomial O (x) equals the product of all monic irreducible

polynomials whose degrees divide » .
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(ii1) The number of monic irreducible polynomials of degree nis equal to

[¢(s-1)]

——— where ¢ is the Euler ¢ - function .
n

The next result reduces the labour involved in checking that an
irreducible polynomial of degree n is primitive in certain cases .
Theorem B : Suppose thatp=3(mod4) .Letg(x) be a monic
irreducible polynomial of degree 7 .Consider the Galois field
GF(s)=( F , mod( p , g(x)) .Then,
if x*”?=_] undermod( p , g(x)) arithmetic then g(x) is primitive .

We are now ready to construct ff,s using the first Paley method .
We give the construction procedure in steps . In this construction we
need to develop GF(3’)sothat n=p=3 and s=27.

Step 1. Find a cubic monic primitive irreducible polynomial in
Zs/[x] . At first glance this step seems easy . According to Theorem A
we need to factorize Q,(x)=x"-x into irreducibles of degree
dividing 3 . The polynomial we seek is among the factors . Now
x7-x= x(x"-1) (x*+1)and by the Remainder Theorem x'°-/and
x”+1 have x-1 and x+1 as factors respectively . Upon division by
x-1 and x+1 we are left with two lengthy 12 degree polynomials

which are indeed very difficult to factorize . So we abandon this
approach and try a different strategy .

This strategy works well when 7 is small and prime . We now present
the strategy as a sequence of problems and solutions .

A cubic monic polynomial in 7, /x/ has the form :a +b x +c¢ x” + x’ with
a , b, c inZ;. Hence there are precisely 27 such polynomials .
Problem 1. Find all the cubic monic reducible polynomials in z; /x/ .

Solution . Using the Remainder Theorem it may be verified that the list
of 19 monic cubic polynomials are all reducible :
(1) Aox Prx Fxs XFexN Fex-x xSt X
(ii) -1l XL PAx+l XX -x+l XX tx-l KA -x-1

(111) x3+1,' x3-x2-1; x3+x2+x+1; x3+x-1 .

In fact g(x) is in (i) iffg(0) = 0 ; q(x)is in (ii) iff g(1) = 0 and g(x) s in (iii) iff
q(2)=0.

Problem 2. Find all the cubic monic irreducible polynomials in 7; /x] .
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Solution . The purpose of Problem 1 was to eliminate the 19
Monic reducible polynomials of the possible 27 monic cubic
polynomials . The remaining 8 must be monic irreducible
and hence any of them is suitable to develop GF(3’). We
list the 8 in 2 groups :
(PI) x3_x_2,. x3_x2_2,. x3+x2-X+1,’ x3_x2+x+]
(NPI) x3-x2-x-],‘ xj-x-],‘ x3+x2+x-],' x3+x2-]
Again the Remainder Theorem may be used to verify that the 8
polynomials listed in (PI) and (NPI) are irreducible .
Problem 3. [This problem addresses Step 1] . Find a monic cubic
primitive irreducible polynomial in z; [x/] .
Solution . The polynomial we seek is among the 8 polynomials listed
in the solution to Problem 2 . By Theorem A (iii) there are
#(26) 12
3
There is no quick method of identifying which 4 amongst the 8 are
primitive . We resort to a well known mathematical technique : trial and
error . We simply pick one of the 8 listed polynomials and apply Theorem
B to it and continue on until we are succesful . In this way we find that the
4 polynomials listed in the group (PI) are primitive and the remaining 4 are
not. As an illustration let us verify that the irreducible polynomial

g(x)=x"-x-2is primitive. Consider GF(3’) under mod(3 , g(x))
arithmetic . Then under this arithmetic we have the reduction relation
(RR): x'=x+2
Now undermod (3 , g(x))arithmetic we have
x?=(x')" =(x+2 )" using (RR)
=x'+2x'+2x+1 ,expanding
=x(x+2)+2(x+2)+2x+lusing (RR)
= x2 +2
Hence x"= x(x’+2 )= x'+2x= x+2+2x using (RR) .
= 2 = -]
That is, x"* = -1and by Theorem B, g(x) is primitive .
The next problem is now unnecessary but it illustrates Theorem A .
Problem 4. Factorize Q (x)=x""-x to illustrate Theorem A .

= 4 such cubic primitive irreducibles .

Solution . In this case n = 3. Thus the only irreducibles of degree

108



Journal of Humanities and Applied Science

Dividing n=3 are of degree 1 or 3 . Those of degree 1 are
Clearly x , x-1, x+1 and those of degree 3 are listed in
(PI) and (NPI) . Hence

(x+1) (x*-x-2) (X'-x"-2) (X +xX"-x+1) (X-xX"+x+1)

(-1 (X-x"-x-1) (X’-x-1) (P +x°+x-1) (X +x°-1)
Indeed the factors in the first line multiply out tox”*+/and those in the

x26_I:

second line multiply out to x"* - 7
Step 2. Select a monic cubic primitive irreducible polynomial and use it
to develop GF('3’ ). Write the elements of F in both the additive

form and as powers of its cyclic generator x .
This is the second crucial step in the construction process . We choose the

cubic primitive irreducible polynomial g(x)= x’-x-2. The underlying set
F of GF(3’)is thenFZ{ ax’+bx+c : a,b,c ez }‘ ,and
Fundermod( 3, g(x)=x'-x-2 ) arithmetic is a Galois field of order 27.
To facilitate computation under mod(3, g(x)) arithmetic we will, as before,
use the reduction relation :

(RR): x'=x+2.
Since g(x) is primitive the cyclic group F = F -{0}has x as a generator .

Hence F*Z{ X o 0ZLiL25 } .For convenience, we rename the 27
elements of F as follows:
a.;=0(zero element of F ) , ¢ =x-=1(unit element of F/ ) ,and in

general g, = x' , 0<i<25 .Before we develop the additive (polynomial)
and power form for each element of F ,a very crucial step for the Paley
construction, let us demonstrate a particular calculation by finding the
additive form ofy’ e~ .We use (RR) as often as necessary. Now
FEX(F)=X(xt2) =X +2x =x+2+2x=2x"+x+2. Thus the
additive form of yx’ is 2x’+x+2. Using this method we can develop the
additive form of each x' .Since g(x)is primitive, we are guaranteed that we
can do 26 such calculations in succession and thereby exhaust f* obtaining

the additive form of each element of /' .In the table below we record the
27 elements of F'in their additive and power forms and identify each with
the appropriate symbol ¢; .
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Elements of F in the additive and power form
2 7 2
05_1:0 tg —v8-2¢2:2 oc”:.\'l/ =2v 7 +x
N 9 18__2
o =t = t,=r =r+1 o=t T =v T+ 2+
=y 10__2 19_o 2
o= U=t =V U=t =2r7+2yr+2
2 ) , ,
o, = all:x“:.\'“+.\‘+2 oy v 2022y 24141 (T)
3419 2 .2 2 2
Rg=vm=r+s @), =X 12 4242 o a2a?sl
o —viZiox _13_o 22_o9. .9
4 XL ) =v =2 0y, =t T =21+2
— -S_'7 .2 19 14 23 2
Rg=X" =X +X+s @ ==y 0y, =¥ 7 =217+ 2x
_,.0__2 _ 15 2 24 2
S +1 o = =2¢2 0y, =" =2y +2v+1]
v/ _2.,9,.9 16 25 2
O, =X =X +axta @, =V =2v+1 oy =x =217 +1

Step 3. Construct the Paley matrix O =(g,) of order 27 defined in (3.1)

of part three .
Recall that the entries g, are defined as follows :
0 if i
’If;' _J1 1}‘ i=j and o -a, is  a quadratic residue in F
-1 if i# and o-o is a quadratic nonresidue in F .

The Paley matrix Q will be presented in partitioned formQ=/ Q,|Q, /,
where Q,is of order 27x15 and Q, is of order 27x/2 at the end of this

example . The vertical and horizontal margins will be labelled by the
elements ¢; of F' .Crucial to developing the entries of Q is table (T) of

Step 2 . We illustrate how table (T) helps in developing Q by solving the

next problem .
Problem 5. (i) Compute the entriesq, ,,andg, ;ofQ.

(i) Explain whyg, ,=-q foralli , j
Solution .
O Nowgrn-as=x"-x"=(2x+2)-(2x’+x+2)=x’+x=x"",using table
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(T) twice . Since x'’is a quadratic residue in F , ¢ ; ,,=1.

Similarly, gs- .= x*-x*' =2 x> +2)-(x’ +2x)= x’- 2x+ 2= %' | using table
(T) twice . Since x'’is a quadratic nonresidue inF ,q,,=-1.

(i) Nowg,;-a;=-(ai-a;). Alsox'’=-Ifrom table (T) . Suppose that
ai-ai=x". Theng;-a;=-(a;-a;)=x".x"=x"".Thusk +13is even iff
k is odd and k+13 is odd iff k is even. Henceg,=-q .

Step 4. We are now ready to construct 7/ ,; the Hadamard matrix of order
28 .
First we form the matrix S of order 28 defined in (3.2) of part three :

[ 0 - J1x27J
S= ,
J27x] Q

where Q is the Paley matrix developed in Step 3 and J,,,, is a vector each of
whose entries is +1 . Finally set
Hoxs=1xtS,

where J,41s the identity matrix of order 28 . Due to Theorem 3.3.1, we
know that ff,, is a Hadamard matrix of order 28 . From Problem 5 (ii), we
know that Q is skew symmetric and hence so is.S . Thus by definition, the
matrix f ,s constructed here is a skew Hadamard matrix . It is interesting to
note that each diagonal entry of /7,5 is +1 .
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QG 0| o o |a | % Gy | En % %y
- - - - + + + - -
T . - + + + |- - + - +
+ 0 |+ . + |- . - + |+ . +
- - o - < |- + |+ R - - s
~ ~ ~ ° — - ~ - - - — - ~
FOE - o |- + - - + |+ - -
- - |- + <+ o <+ - [+ R - - +
T T I R -l = =
- + |- - + |- = o |+ + |+ - -
- ~ - ~ - - - o - - - -
+ - - + - - - - -+ + - - -
- . |- + - s 0+ . - + |- s .
- - + - - + - -+ + 4] - -
- - - - - - - - - - 0 -
- - |- - < |- - |- + |+ + 0
- * - * - - - * - * - - -
- + |- - - - + . - - - &+ +
- - - - - - - - - - — - -
+ + - + - - - - - - - -
- - - + - - + - -+ + + - +
- - - - - - - - + - - -
- + - - - - - - + - - -
- - |- + =+ |- - |- - - - .
- - - - - - - - - - - -
+ + - - - - - - - - - -
- . |- + + |+ . - - + + +
+ + + - - - -
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We now develop the second Paley construction (outlined in statement
(P2)) . This construction is based on the concept of a conference matrix . A
conference matrix , hereafter called a C-matrix , is a matrix M of order n

such that the diagonal entries of M are zero , the off-diagonal entries are +1
or -1land MM =(n-1)],.Clearly , if M is a C-matrix then MM =n-1)],
so that every pair of rows (or columns) of M are orthogonal . C-matrices
were first used by Belevitch (1950) in studying the theoretical aspects of
electrical networks . Later they were studied in their own right by Goethals
and Seidel (1967) who in fact referred to these matrices as conference
matrices . Since the second Paley construction depends on the existence of
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C-matrices we state two results below without proof which shed some light
on the question of their existence.

Let mbe a positive integer and suppose m=5,’( p, p, p; ... p, ) Where
p,(1<i<k) are distinct prime numbers . Then the number
t=p, p, p; ... p, is called thesquare freepart of m.The following two -

square theorem is a well known number theoretic result and includes the
celebrated two square Fermat theorem as a special case . We refer for the proof
to Hardy and Wright (1954) .

Theorem 4.2 : [Two Square Theorem]

A positive integer m = x’+ )’ , for some integers x and y if and only if
the square free part of m consists of prime numbers each of which is
congruent to /(mod 4). The connection of the two square theorem to C-

matrices occurs via the next theorem. For a proof of this next theorem see
Raghavarao (1971) and Wallis et al (1972) .

Theorem 4.3 : A necessary condition for the existence of a square
rational matrix M (i.e. M has rational number entries) of ordern = 2 (mod 4)
satisfying M'M =m [, for some positive integer m is thatm = 4’ +p’ for
some integersa and b.

A clear inference from Theorem 4.2 and 4.3 is the following :

Corollary 4.3 :A necessary condition that there exist a C-matrix of order
n=2(mod4)is that the square free part of 7n-/consists of prime numbers
each of which is congruent to / (mod 4).

From Corollary 4.3 we conclude that there are many values of
n=2(mod4) for which a C-matrix of ordern does not exist . For examples
C-matrices of orders n=22,34,58,78,...,etc .do not exist . For a listing
of orders <1000 for which C-matrices exist and those orders excluded by
the above results see Wallis et al (1972).

For certainn = 2 (mod 4) a C-matrix of this order n always exist . Indeed

the developments earlier in this part guarantees this . To ferret out this
pleasant situation we adjust the definition of § given in (3.2) .
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Consider the matrix T of order s +/ defined as follows :

0 J]xs (33)
T = Ts+1 =
Jsx] Q (s+1)x(s+1)

where the matrix Q1is defined in (3.1) .

Lemma 4.7 :Suppose that the order s=p’ ,pan odd prime , of the
Galois field F satisfiess=1/(mod4).Let T be the matrix of orders+/
defined in (3.3). ThenT is a symmetric C-matrix .

Proof :Sinces=1(mod4) ,Qis symmetric by Lemma 4.4 and hence so
is T'. Further , as in the proof of Lemma 4.6 ,

s 0’

T’T=[ _]= s [, ,using Lemma 4.5 (i) . Hence Tis a C-
0 00+ Ju

matrix , completing the proof . O

We remark that the matrix S of orders+ /defined in (3.2) is also a C-
matrix but it is not symmetric . The second Paley construction requires a
symmetric C-matrix and this necessitates the adjustment of S to7 as done

in (3.3).

Example 4.2 : We construct the symmetric C-matrix 7. First
GF(5)={0,1,2,3,4} under +; , *; . The quadratic residues of GF(5)
is the set QR={0,] 4 }and the quadratic nonresidues is the set{ 2,3 }
Thus

0o + + + + +
+ - -+

+ + - -+
+ 0 + - -

+ + 0 + - -

O=|- + 0 + -| and T4 =

+ -+ 0 + -
- -+ 0 +

+ - - 4+ 0 +
+ - - F S5x5

+ + - -+ 0

It may be verified that 7, T =Ty Ts=3 I
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Example 4.3 :We construct the symmetric C-matrix 7,,. First, as in
Example 3.2, we consider

GF(9)={ 0, x =1, x'=x, ¥ =x+1, ¥'=2x+1, x'=2, ¥’ =2x,
X=2x+2, Y =x+2 } under mod (3, x’+2x+2 )arithmetic . The set
of quadratic residues of GF(9) is OR ={ 0,1, x+1,2,2x+2 } and the
set of quadratic nonresidues is{ x, 2x+1, 2x, x+2 }. Thus the matrix

0 =(q;)of order 9 defined in (3.1) is displayed below (the horizontal and
vertical margins are indexed by the elements of GF'(9) ) :

0 1 x x+1 2x+1 2 2x 2x+2 x+2

o o 1 a1 1 a1 1 2 ] ]

] 1 0 -1 -1 -1 1 1 -1 ]

O — x+1 |1 a1 1 0 -1 -1 4 ] ]
S ox+1 |1 a1 1 -1 0o 1 1 ] 1
? 1 1 1 -1 1 0 -1 -l 1

ox (-1 1 -1 -1 1 a1 0 1 ]

ox+2 |1 a1 a1 1 1 a1 1 o0 1

2 |11 011 a1 a1 1 0

Then the symmetric C-matrix 7,,defined in (3.3) is obtained fromQ by

bordering it as follows :
0 I
Tiw = .
] Q 10x10

Theorem 4.4 : [Second Paley Construction ; Paley (1933)]
1) If a symmetric C-matrix M of order n exists then the matrix
1 1 1 -1
H= QM + X7, (3.4)
1 -1 -1 -1

where ® is the Kronecker product , is a symmetric Hadamard matrix of order
2n.
i1) If T is the symmetric C-matrix of order s + / defined in (3.3) ,where

s= p"=1(mod 4)and p is an odd prime , then

1 1 1 -1
H= ®T + ®J7,
1 -1 -1 -1
is a symmetric Hadamard matrix of order 2s + 2.
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Proof : (ii) is immediate from (i) and Lemma 4.7 . Hence we prove (i) .
Note that H defined in (3.4) can be rewriten as

M+1 M-1
H = . Now by direct multiplication ,
M-1 -(M +1)
M+ M-1 M'+1 M'-1
HH' = = 2nl,
M-1 -(M +1) M'-1 -(M'+1)

performing the block multiplication and usingM = M'andMM =(n-1) ], .
O

The Paley constructions given in Theorems 4.1 and 4.4 form the
backbone of a number of further construction results on Hadamard matrices
based on Galois fields which have been developed since Paley's initial
effort in 1933 described here . At this point we simply summarize some of
these additional construction results below . We emphasize that these are
actual constructions when the stated conditions are met , as are the Paley
theorems , and not merely existence statements . For detailed proofs of
these results see Hall (1967) . As in first part , the constructions below are
of the recursive type , and use the Kronecker product when appropriate .

Theorem 4.5 :[Williamson (1944) ; Generalization of Paley's second Construction ]
Ifs=p'=1(mod4) , paprime and if a Hadamard matrix H of order n >/
is given then a Hadamard matrix of order n(s+1) can be constructed .

Theorem 4.6
i) Letn=2"k; k; ... kn -Suppose that either ;= p/" +1=0(mod4) or
ki=2( pi+1), pi'=1(mod4) for each i.Then a symmetric Hadamard

matrix of order n can be constructed .
i1) Let a skew Hadamard matrix of order n be given . Suppose that

s=p'=3(mod4),where p is a prime . Then a skew Hadamard matrix
of order n(s +1)can be constructed .

i) Let n=2" k; k, ... k, where each f,= p/' +1=0(mod 4) with p,
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prime . Then a skew Hadamard matrix of order » can be constructed .

iv) Let a skew Hadamard matrix of order n be given . Then a Hadamard
matrix of order n(n - 1) can be constructed .

v) Let a skew Hadamard matrix of order » and a symmetric Hadamard
matrix of order m = n+4 be given. Then a Hadamard matrix of order
n(n+3) can be constructed.

vi) Let two Hadamard matrices of orders 5, > I and p,> I be given . Let

p be a prime such that p” = 1 (mod 4) . Then a Hadamard matrix of order
nin.( p'+1) p’ can be constructed .

vii) Let two Hadamard matrices of orders 5,> 7 and 5, > 1 be given .
Suppose that 7 is a positive number such that n = p’’+ I for some
prime p,and n+4 = p’;+1 for some prime p,.Then a Hadamard

matrix of order 5, 5,n(n+3) can be constructed .

We now give some examples to illustrate the two Paley constructions .

Example 4.4 :To construct a Hadamard matrix of order 8 , we observe
that 8=7+1 . The quadratic residues of GF(7)={ 0,1,2,3,4,5,6 } is the
set OR ={ 0,1,2,4 } and the quadratic nonresidues is the set{ 3,5,6 }
Using (3.1) , and (3.2) we construct the matrix Q and the matrix S

o - - + - + +

+ 0 - - + - +

+ + 0 - - + - 0 -J 7
o=- + + 0 - - +| , §=

+ -+ + 0 - - J i Q7 ),

-+ -+ + 0 -

- -+ -+ 4 0y

Finally , by Theorem 4.1 , ;f4= 5+ S :
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+ o+ 4+
1
1 1

\ +
+ )

1 +

+

Hs=

+ o+ o+
+ o+ o+
1
1
_|_

+ o+ o+

+ 4+ o+ + + o+ o+ o+

+ o+ o+
1

- -+

+ 8x8

Example 4.5 :To construct a Hadamard matrix f7,, of order 12 , there
are two ways . First we observe that 12=11+1 . The quadratic residues of
GF(11)={0,1,2,3,4,5,6,7,8,9,10 } is the set

OR={0,1,3,4,5,9 } and the quadratic nonresidues is the set
{ 2,6,7,8,10 }.Using (3.1), and (3.2) , the matrices Q and S are

o - + - - - + + + - +

+ 0 - + - - - + +

|
+

|
+

1

1

-+

+ o+ o+

+ o+ 4+
+ o+ o+
+ o+ o+

+
1
+

+ o+ o+

_|._

+

+ o+ o+

+ + 0 1Ix11
-J i

J1ix1 O

12x12
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Thus , by Theorem 4.1 ,fH,,=7,,+S is the skew Hadamard matrix
displayed below:

Hp; =

+ 4+ + + + + + + 4+ + o+ o+

+

+

1

1

1

_|_
+ o+ o+

+ o+ o+

+ o+ o+
1
1

+ o+ o+
Vot

+ o+ +

+ -+ + 12x12

Now we construct A ;, by the second Paley construction . As 12=2(5+1),

where 5 is a prime and5+/=2(mod4),we can use Theorem 4.4 and
Example 4.2 to construct 7/ ;,. From Example 4.2, and Theorem 4.4 (ii) ,

0

H
(=
I
+ 4+ o+ +

+

+

0
+

+

+
+
0

—+

+

+ < 4+

+

+

0
+

+

+

+
0

6x6

, and H12={

Tst1s

T6’[6J
Ts-1s -(Ts+1s)

Hence FH,,is the symmetric Hadamard matrix displayed below :

120



Journal of Humanities and Applied Science

+ + + + + + - + + + + 4+
+ + + - -+ + - + - - +
+ + + + - - + + - + - -
+ -+ + + - + - + - + -
+ - -+ + + + - - + - +
+ - -+ + + + - -+ -
Hp =
- + + + - - - - - -
+ - - -+ - - -+ + -
+ + -+ - - - - - - + +
+ -+ -+ - -+ - - -4
+ - -+ -+ - 4+ + - - -
++ - -+t - - -+ + - Jpun

Example 4.6 :We construct a Hadamard matrix of order 20 by the
Second Paley construction . As 20=2(9+1), where 9 is a power of a prime
and 9+/=2(mod4),we can use Theorem 4.4 and Example 4.3 to
construct f,, as follows (we display 7,, below, it is obtained from
Example 4.3) :

D + + + + + + + + +

+ 0 + - + - + - + -

+ + 0 - - - + + - +

O 1+

+ o+ -+ 0 - - - 4 =
TlO: + - -+ -0 + + + -

+ + + + - + 0 - - -

+ - + - - + = 0 + +

+ + - - + + - + 0 -

S ) ST
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and then by Theorem 4.4 (ii)

H

(Tzo*‘]m
Tiw-1w

A full display of A ,, is below :

20 ©

- 4+ + F -
+ 4+ + + +
- = F -
+ 4+ + - +

122
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(Tt 1)

- - - + +
- + + + -
+ - - + +

<

/

20x20
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On Some Methods of Constructing Hadamard Matrices

Abdurzak M. Leghwel '

Abstract

There are two methods , often used to produce examples of algebraic and
combinatorial structures . One of these methods begins with at least one
example of the desired structure at hand and then constructs further
structures of a like kind . We call such a construction method recursive.
Another method (or methods) is to generate the desired structure simply
after certain parameters regarding it have been specified . We shall call such
a method of construction an ab initio method .

Hadamard matrices are algebraic structures in the sense that they form
an important subclass of the class of matrices and hence must conform to all
the algebraic rules obeyed by matrices under the usual operations of
addition and multiplication . On the other hand , Hadamard matrices are
combinatorial structures as well since the entries +1 and -1 of which the
matrix consists must follow certain patterns . Thus one expects that one
should be able to utilize both type of constructions methods , recursive and
ab initio , to construct Hadamard matrices . This is indeed the case and in
this paper we review some of these construction methods for Hadamard
matrices .

In the second part we will introduce the concept of the Kronecker
product and develop a recursive construction method for constructing
Hadamard matrices based on it . Two important ab initio methods are
discussed in the fourth part of this paper. These methods are due to Paley
(1933) and is based on Galois fields . Hence some Galois field basics are
presented in the third part also.

Keywords : Hadamard Matrix, Kronecker product, Galois fields.

1. Introduction
A (-1,1) - matrix is a matrix whose only entries are the numbers -1 or 1 .
In this paper for the most part we will be interested in special (-1,1)-
matrices called Hadamard matrices .

! Department of Mathematics, Faculty of Science, Alasmarya Islamic University, Zliten — Libya .
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A Hadamard matrix of order n is an nxn (-1,1)- matrix H, satisfying
HH=HH=n]J, where H'denotes the transpose of H and J, is the
identity matrix of order n. If H is a Hadamard matrix, it follows from the
definition that the set of row vectors of H, as well as, the set of column
vectors of H form mutually orthogonal sets . The reader is referred to [6].

2. Construction of Hadamard Matrices Based on The
Kronecker Product

In this part we present the construction of Hadamard matrices employing
the Kronecker product . This construction is recursive and requires at least
one Hadamard matrix at hand in order to utilize it . It is , therefore , most
useful when employed in conjunction with some of the other techniques for
constructing Hadamard matrices to be developed later . We begin by
introducing the concept of the Kronecker product of matrices and some of
its basic properties .

Definition :1fA=(gq;) is a pxq matrix and B =(p;)is a rxs matrix , then

their Kronecker product A® B is the prxgs matrix given by

1 1 2 4
Example 2.1 :1f A= , B= ,
] - ] 2x2 - 5 3 2x2

2 4 2 4
-5 3 -5 3
then AR®B=
2 4 -2 -4

-5 3 5 -3
The basic properties concerning how the Kronecker product ® relates to

the matrix operations of addition , multiplication , scalar multiplication and
transpose are given in the following theorem .

Theorem 2.1 :Let A=(q;) be apxq matrix andB=(p;) be a rxs
matrix. The Kronecker product A ® B is a prxgs matrix with the following

properties :
1) a(A®B) =(a A)®B = A®(a B) for any real number «,
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i) (A4,1t4,)®B =(4,®B) + (4,®B)and
A®(B;t+ B;) = (A®B;) + (A®B,),
i) (4, 9B )(A:®B,) = A4, 4,® B, B, , where the matrices 4, and B;
respectively are compatible for multiplication ,
iv) (A®B) = A'®B',
v) (A®B)®C = A®(B® () for any matrix C,
vi) A®B)' = 4'® B’ ,if 4/ and B exist.
Proof :We will prove property (iv) , and we refer to a standard text in
linear algebra for the rest .

Since
) > o )
a,B a,B . .. nqu I”B (:lB anB
a,,B a,,B . . . a, B a.B" a.B' . . . a.B’
21 22 29 12 22 22
ABB-= {ASB)' = =A'@B
a, B ”y:B L. (IP{!B ay, B’ ay, B . . . aB'

prxqs 79 xpr

(I
The relationship between the determinant of the Kronecker product of
square matrices and the determinant of individual matrices is given in the
following :

Theorem 2.2 : For any two square matrices 4 of order m and B of order
n, det(A® B)=/[det(4)]" [det(B)]" .
Proof :We prove the theorem for the case when A has order m=2.

ain  an

az a»

Then A= ( J Ifall g; =0 then the theorem is clearly true . Hence
2x2

, without loss of generality suppose that 4,,# 0. Then

Cl]]B Cl]ZB

A®B= [ ] Further , we may also assume without loss of

asj B az B
generality that det(B) # 0. Then by [6, Theorem 3.1],

det (A® B)=[det(a;, B)] [det(a»B - aB(ayB)" ai;B)]
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=/[det(a; B)] [det(ax»B - axalianB)]

=det/ a;; B(ax B- asaiia;:B)]

=det/ (a;axz- azarn) B'] = (anasx- axap) det( B’)
=det /4 ]"det[ B’ ] = [det(4)]" [ det(B) ]’ and the theorem

is proved for the casem =2 . O

From the viewpoint of Hadamard matrices , the properties of the
Kronecker product immediately imply the following result :

Theorem 2.3 :If H, and FH, are Hadamard matrices of orders p; andy,
respectively , then /7, ® f, is a Hadamard matrix of order s, z,.
Proof : Let H, and K, be a Hadamard matrices of orders 5, and 5,

respectively . Then
(H®H,) (H®H,) =(H,®H,) (HI®Hy) = HH/®H,H~»

:n11n1® n2 1,12:n1n2 Inmz‘ O

Corollary 2.1. :Since there is a Hadamard matrix of order 2 , namely

1 1
H,= ( ] then there are Hadamard matrices of order?” for every
1 -1

positive integer 7.
Proof :H,= H,®H,®....Q H,,the Kronecker product of g, with

itself extended over n factors gives the desired Hadamard matrix of order
2". O

Corollary 2.2 :1f H is a Hadamard matrix of order £k,for some
positive integer k then there is a Hadamard matrix of order 2" k for every

positive integer 7.
Proof :Let H,= H® H,., where H is a Hadamard matrix of order &,

and A, is the Hadamard matrix of order 2" given in Corollary 2.1 . Then
by Theorem 2.3, f, is a Hadamard matrix of order 2" £ .O

Example 2.2 :Let [, be the normalized Hadamard matrix of order 2 .
The matrix
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+ o+ o+

+

+ - + - . .
H,= H®H,= 1s a Hadamard matrix of order 4 .
+ o+ - -

+ - - + 4x4
By Theorem 2.3, we conclude that H,= H,® H,® H, is a Hadamard
matrix of order 64 .

Theorem 2.3 will be more helpful when we apply it to Hadamard
matrices constructed by other methods . We discuss some of these other
methods below .

3. Some Galois Field Basics

Galois fields will play an important role in the construction of Hadamard
matrices. Thus we take a closer look here at some Galois field basics
including a recipe to construct such fields . For the proofs of results stated
in this part of the paper we refer to Herstein (1996) .

Let F be a field and let n be any positive integer . For x € F' we define
nx=x+tx+x+...+x (nterms in the sum ) . A field F is said to have
characteristic m, if there exists asmallestpositive number m such that
m x =0 for all x € F'. If no such positive integer m exists then F is said to
have characteristic zero .

Let Z be the set of integers , and n=>2 be a fixed integer . For any
a,beZ,we define a=b(modn) if and only if n divides(a - ). One may
check that = is an equivalence relation on Z. For a € Z,we let [u] be the
equivalence class determined by ¥ mod n. Then

[u]={tn+a teZ } is called the residue class mod n determined by

u.
Let Zz, be the quotient set of Z under =. Then one can verify that
Z.= { [0],[1],[2],...,[n-1] }(i.e.Z,, consists of n residue classes) .

In the set 7, we introduce two operations, +, called addition mod n

and *, called multiplication mod n as follows :

For /[a],[b] € 7z, define [a]+,[b]=[a+b] and [a]*,[b]=[ab].
Then we can verify that (7, , +, ,*,) is a commutative ring with »
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elements, called the ring of integers mod n.In general z, is not a field .
To simplify the notation we will denote the element/c/ of Z, by c.

Lemma 3.1 : Let F bea field . Then either F' has characteristic zero( F'

is an infinite set and F contains an isomorphic copy of the rationals) or the
characteristic of F' is a prime number p ( F may be a finite or infinite set

and contains an isomorphic copy of the ring 7, ).
Lemma 3.2 : 7, isafield if and only if n is a prime number .

Let 7z, be the ring of integers mod 7. An expression of the form
J)=a *ax+ta X+ . taxt
in an indeterminate x with g, € Z, is called a polynomial over z,. The
elements g; are called the coefficients of the polynomial . Further when
ar#0 , k 1s called thedegreeof f(x), and when 4, = /1], the unit
element of 7z, , f{x) is called a monic polynomial .

Letz,/x] = { fx) : f(x)polynomial over Z, }be the set of all
polynomials over z,. Let f(x), g(x) be polynomials ingz,/x/. The
sum of fand g,denoted by f(x)+ g(x), is obtained by adding
coefficients of like powers of x. The product of f and g,denoted by
f(x) g(x), 1is obtained by term by term multiplication using the
distributive law of Z,, and then gathering together terms of like powers
of x. Under these operations Z,/x/ is a commutative ring with unit ,
called the ring of polynomials over z,.We will be interested in the ring
Z,[x], where p is a prime number so that 7, is a field . In all that
follows p will denote a prime number .

Theorem 3.1 :[Factor Theorem]|
Let f{x) , g(x)#0 in Z,/x], and c € Z, be given . Then

1) there exist unique g(x) and r(x) in Z,/x] such that
fx)=g(x) q(x) + r(x),where r(x) =0 or the degree of r(x) is less than
the degree of g(x). The polynomial r(x) is called the remainderand
q(x) is called the quotient ,

ii) the remainder in (i) dividing f(x) in Z,/x] by x-c is f{c).
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Let fix) , g(x)#0 in Z,[x] be given . We say g(x) divides

fx) ( gx)| fx)) if and only if f(x)=g(x) g(x) for some g¢(x) in
Z,[x] .Then g(x) is called a factor of f(x).

Theorem 3.2 : [Remainder Theorem]|
If fix)eZ,[x] and ce Z,, then x-c in Z,/[x] is a factor of f{x) if and

only if f(c)=0.

A Galois field F is a field F in which the set F has a finite number

of elements . We will denote a Galois field with s elements by writing
GF(s). By Lemma 3.2, 7, is a Galois field ( GF( p)), where p is any

prime number , consisting of p elements. Let f{x)e Z,/x]/ be given . Then
any c#0 in z, divides f{x) since f(x)=c( ¢’ f{x)). Hence any
polynomial of the form ¢ f{x) , ¢#0 in z, will be called an associate of
).

A polynomial f{x)e Z,[x] is called irreducible over 7, if and only if
the only divisors of f{x) are f{x) and its associates . Those polynomials in
Z,[x] which are irreducible over 7z, will play a key role in the

construction of Galois fields . We now record some properties of Galois
fields .

Theorem 3.3 : LetF = GF(s) be a Galois field with s elements and let
F'=F-{0}. Then
i) s=p" for some number n> 1, and some prime p.This prime p is the
characteristic of F'.
ii) 7 under the multiplication of F is a cyclic group . Hence there exists
some a € F" such that F*={ a=1,4d, d, ..., a7 } Such an
"a" which generates f" is called a primitiveelement of " .
iii) Let g(x)€ Z,[x] be an irreducible polynomial over 7z ,, where p is a
prime number and the characteristic of F'.Then g(x) divides x*'-1.
iv) x*-x is a product of all the monic irreducible polynomials over
Z,[x] of degree dividing n, where p is the prime characteristic of F
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and s=p".

v) There exists a Galois field with p" elements for any prime p.

Theorem 3.4 : Let FZ{ 0, ar a»» ---» as-l} be a GF(s), s=p"
where p is a prime number . Then the polynomial x'-x in Z,/x/
factorizes into linear factors

x-x=x(x-q;) (x-ay)...( X-a.;).

Let F be a Galois field with s= p" elements . Then an irreducible
polynomial f(x)e Z,[x] is called a primitiveirreducible polynomial if
and only if f{x) divides x"-1 for m= p"-1=s-1 but for no smaller m .
Now we give a recipe to construct a Galois field of orders,where
s=p", p isaprime number, and n>1 is an integer .
When n=1, by Lemma 3.2 the ring 7, is aGF( p) under addition and
multiplication mod p,
When n > 2, we consider the polynomial x'-x in Z,/x/, and

i) Factorize x'-x into irreducible factors over Z,/x/. Select all the
irreducible polynomials in this factorization whose degree equals 7. Let us
say there are k of them g,(x), g,(x), ..., g,(%).
ii) From the g/s in (i) select those g,(x)which are primitive . We can
develop the Galois field using any of these irreducible polynomials g,(x).
However picking a primitive g,(x) gives a better description of the field for

computational purposes . It actually provides a primitive element (a cyclic
generator) for the field . From now on we will work with primitive
irreducible polynomials .

ii1) Suppose we have chosen a primitive irreducible polynomial of degree n
from (i1). Let us call this selection g(x).If we cannot decide on a primitive

one , we can simply pick any g,(x) from (ii)

iv) Let F={ fix)ez,[x] : degree of f(x)< n-1 },i.e. F is the set of
polynomials of the form ¢ + g, x + g, x” + ...+ @, x"" with g€ 7,.
Let f,(x), f,(x) bein F.To add f,(x) and f,(x), we do term by term
addition of polynomials reducing the coefficients mod p . To multiply f',(x)
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with f,(x) we do the usual multiplication reducing the coefficients mod p .
Then we divide this product by g(x), where g(x) is chosen in (iii) , and
take the remainder as the product of f, with ', . We call this procedure of
adding and multiplying mod (' p , g(x))arithmetic.

v) The set F' defined under mod( p, g(x)) arithmetic is a Galois field of
order p". To verify this , we refer to Herstein (1996) .

Consider a Galois field GF(s) of order s, where s= p", with p an odd
prime . An element a € GF(s) is called aquadratic residue (for short QR)
if and only if there exists some b e GF(s) such that a =p’. If no such b

exists ‘a' is called a quadratic nonresidue. Note that 0 , 1 are always
quadratic residues of GF(s).

Let x be a primitive element of the multiplicative group F* = F-{0},
where F isa GF(s), s=p",
residues of F are in the set QR={ A A }

We illustrate the steps (i) - (v) by developing some examples of Galois
fields which will be useful later in this paper .

p 1s an odd prime . Then all the quadratic

Example 3.1 : We construct F' = GF(7). Since 7 is a prime number we
take F=z,={0,1,2,3,4,5,6} under mod 7 addition and
multiplication . The addition and multiplication tables are given below :

+ 10123456 % 0123456
010123456 0 10000000
1 (1234560 1 |0123456
2 12345601 2 10246135
313456012 310362514
4 14560123 4 10415263
515601234 5 10531642
6 6012345 6 0654321

Note that 3 is a primitive element of F' and
orR={0,3, 3,3 |={0,1,24}
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Example 3.2 : We construct GF(9). Note that 9= 3, so the base prime
is 3 and the basic Galois field we work with is 7,. Factorize x’-xinto
irreducible polynomials over z;/x/ :
ox=x(xX*-D=x(xX*-D(xX'+D=x(x-Dx+1D)( ¥+ D(x+2x+2)(x*+x+2)
By Theorem 3.2.2 , the remainder theorem , the polynomials g,(x)=x"+1,
g,(x)=x"*+2x+2, and g,(x)=x"+x+2 are irreducible. Of these the
polynomial g,(x) is not primitive since x”+/|x*- 1. From the factorization
of x’-x it is clear the polynomials g,(x) and g,(x) are both primitive
irreducible polynomials . We will work with g,(x).

Consider the set FZ{ a *ax : a »ar€Z;[x] } under

mod( 3, g,(x)) arithmetic . Then F has the nine elements as follows :

a =0 , q=0 0 a=1 , a=0 ]
a, =1 X, a, =1 c I+x
a=2 2x a;=2 1+2x

a =2 , a,=0 2
a;=1  2+x

a;=2 2+2x
By Theorem 3.3 (i1),
F'=F-{0)={1,x,1+x,2x,1+2x,2,2+x ,2+2x | is a
cyclic group under multiplication , and x is a primitive element (generator)
for F°. To verify this we calculate sucessive powers of x, using
mod( 3, g,(x)) arithmetic to get:
0, X"=1, x'=x, ¥’=x+1 (replacingx’byx+1),
Y= ¥+ x= x+I+x= 2x+1,
x'= xQ2x+D)= 25+ x= 2x+2+x=2,
X=2x,x"=2x"=2(x+1)= 2x+2,
X=2x"+2x=2x+2+2x=x+2,
¥*= x¥’+2x= x+1+2x= 1. Thus the powers of x generate ", and x
is a primitive element of F".
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Let us summarize our construction . The elements of /' are
F= 0,1,x,x2,x3,x4,x5,x6,x7 0,1, x,x 1,2x 1,2,2x,2x 2,x 2

The mod( 3, g,(x)) arithmetic tables , one for addition and the other for
multiplication are as follows :

+3 0 1 x x+1 2x+1 2 2x 2x+2 x+2
0 0 1 X x+1 2x+1 2 2x 2x+2 x+2
1 1 2 x+1 x+2 2x+2 0 2x+1 2x X
X X x+1 2x 2x+1 1 x+2 O 2 2x+2
x+1 x+1 x+2 2x+1 2x+2 2 X 1 0 2x
2x+1 | 2x+1 2x+2 1 2 x+2  2x x+1 X 0
2 2 0 x+2 x 2x I 2x+2 2x+1 x+1
2x 2x  2x+1 O 1 x+1 2x+2 x x+2 2
2x+2 | 2x+2 2x 2 0 X 2x+1 x+2 x+1 1
X+2 Xx+2 X 2x+2 2x 0 x+1 2 1 2x+1
+3,%;3
0 1 X x+1 2x+1 2 2x 2x+2  x+2
0 0 0 0 0 0 0 0 0 0
1 0 1 X x+1 2x+1 2 2x 2x+2  x+2
X 0 X x+1 2x+1 2 2x  2x+2  x+2 1
x+1 0 x+1 2x+1 2 2x 2x+2 x+2 1 X
2x+1 0 2x+1 2 2x  2x+2 x+2 1 X x+1
2 0 2 2x  2x+2 x+2 1 X x+1 2x+1
2x 0 2x 2x+2 x+2 1 X x+1 2x+1 2
2x+2 |1 0 2x+2 x+2 1 X x+1 2x+1 2 2x
X+2 0 x+2 1 X x+1  2x+1 2 2x  2x+2

From the above presentation the quadratic residue set in GF(9) is
OR={ 0, ¥, ¥, x'. x }={ 0,1, x+1,2, 2x+2 } .
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Example 3.3 : We construct F = GF(11). Since 11 is a prime number
wetake F=7,={0,1,2,3,4,5,6,7,8,9,10 } under mod 11

arithmetic . The mod 11 addition and multiplication tables are as
follows:

4, 012345678910 %, |01 2345678910
0 012345678910 0 000O0O0O0OO0OO0OO0OO0OO 0
1 1 23456789 100 1 01 2345678910
2 234567 89 10 01 2 0246 8101 357 9
3 34567 89 1001 2 3 0369147 102 5 8
4 4567891001 2 3 4 04815926 103 7
5 56 7891001 2 3 4 5 05104 9 38271 6
6 6 78 9 10 01 2 3 45 6 0617 2 8394105
7 789 10 01 2 3 456 7 07 3106 2 9518 4
8 |89 1001 234567 8 10852107 419 6 3
9 [9 1001 2345678 9 1097531108 6 4 2
10 1001 234567 89 10 {0109 8 7 6 5 4 3 2 1
Note that 2 is a primitive element in GF(11). Thus

OR=10,2, 2,2, 2,2 }={0,1,3,4,5,9}.
Example 3.4 :To construct F=GF(19), since 19 is a prime number
then we take
F=z,={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18 }

under mod 19 arithmetic . The addition and multiplication tables may be
constructed on the same principles as in Example 3.2.3 . Note that 3 is a
primitive element mod 19 and the set of quadratic residues in F is
OR={1,4,5,6,7,9,11,16,17 }.

Example 3.5 :Suppose that the problem is to determine the quadratic
residues and quadratic nonresidues in the Galois field GF(25).

1) First we determine a quadratic primitive irreducible polynomial over

Zs. To this end we take the factor x°+/ in the factorization

x-1=(x"-1)(x”+1), and factorize it into irreducible factors over Z;(

remember that the arithmetic on the coefficients is done mod 5) :
x12+]:(x4)3+13:(x4+])(x8_x4+1) )
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Now
I HI=(+2)(x°+3),
WX = (X 4) (25 ) = (X2 ) (K425 H)
X2 A= (P 2) - = (P2 (P -x+2)
X2 4=(+3)-2x ) =(F T 2x+3)(x-2x+3)
Thus
XPHI=(CH2) () (T x+2) (7 -x+2) (K +2x+3)(x*-2x+3) .

ii) Now x* +1=(x’+2)(x’+3) divides x’-1 .Hence neither g, (x)=x"+2
nor g,(x)=x"+3 are primitive irreducible polynomials over 7Z;. However,
each of g,x)=x"+x+2, g,x)=x"-x+2, g,(x)=x"+2x+3 or
g,(x)=x"-2x+3 are primitive irreducible polynomials over Z;. Any of
these may be used to develop GF(25)giving both a multiplicative and
additive representation to the elements of GF(25). If either g,(x) or g,(x)is

used we would obtain the additive representations of the elements of
GF(25) undermod( 5, g,(x)) arithmetic,i =1, 2,but not the multiplicative

representation .
iii) Suppose we select g(x)=g,(x)=x’+x+2 to develop GF(25). Then
under mod (5, x’+x+2) arithmetic the set
F={x"; 0223} U {0}
={ ax+b : a,beygz;s }

is a Galois field of order 25 . Below we tabulate the elements of /' in their
multiplicative and additive form :

I x X ¥ x* ¥ x° ¥ %8 ¥’ x10
0 1 x 4x 3 4x 2 3x 2 4x 4 2 2x 3x 1 3x 4 x 4
(RN E R N 6 178 19 200 2 2 23

3x 34 4x x 2 x 3 2x 3x 1 3 3x 2x 4 2x 1 4x 1 2x 2

iv) From the table in (iii): the quadratic residues in GF(25) is the set
OR={0,1,4x+3,3x+2,2,3x+1, x+4, 4, x+2,2x+3,3, 2x+4, 4x+1 }.
The quadratic nonresidues in GF(25) is the set

{ x, 4x+2, 4x+4, 2x, 3x+4, 3x+3, 4x, x+3, x+1, 3x, 2x+1, 2x+2 }

99



On Some Methods of Constructing Hadamard Matrices

Remarks
a) It is interesting to note that in Example 3.5, 2 and 3 are quadratic
nonresidues in Z; = GF(5) but are quadratic residues in GF(25).

(p’-p)

b) One can establish that there are exactly monic irreducible

quadratic polynomials over 7, , p a prime . For the case p =5, there

(25-5)

are thus = 10 monic irreducible quadratic polynomials over

Zs. Six of these are given in (ii) of Example 3.5 . The remaining four
of these monic irreducible quadratic polynomials appear as factors of
xIZ -1
XP-1=(x"-D(x°+1)
=(x-DEx+DE+2)(x+3) (X +x+D(x-x+D(xX*+2x+4)(x*-2x+4) .
Of course none of these four monic irreducible quadratic polynomials are
primitive since each divides x"-1 .

4. Paley's Constructions

Firstly, we have shown that for the even prime p=2and any positive
integer ka Hadamard matrix of order n= 2" may be constructed by

1 1
repeatedly taking the Kronecker product of AH,= [ )with itself &
1 -1
times . This raises the question of the construction of Hadamard matrices
whose order n is related to an odd prime power. In this connection Paley
(1933) offered the following two constructions :

(P1) a Hadamard matrix of order n =s+/ can be constructed where s is
a prime power ,say s=p’, p aprimeand s=3(mod4).
(P2) a Hadamard matrix of order n=2(s+1) can be constructed, where
s= p"is a power of a prime p and s =7(mod4).

The purpose of this part is to develop and present the Paley

constructions outlined in (P1) and (P2) . Both involve the use of Galois
fields GF(s) . Unlike the Kronecker product construction which requires at

least one pre-existing Hadamard matrix to implement it , the Paley
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construction produces a Hadamard matrix once the order of the matrix is
specified as in (P1) or (P2) .

The following notation and setting will be used in the formulation of
the results below. Let F = GF(s) be a Galois field of order s where s = p" and
pis an odd prime number. Let H ={I-1} be the two element
multiplicative subgroup of the multiplicative group of the nonzero real
numbers . Recall that the set of nonzero elements of ', call it ", is a cyclic
group under multiplication . The following mapping y ,known as a
character ,and some of its properties will be helpful in detailing the Paley
constructions : y - F~ — H is the mapping defined by

{ 1, aisaquadratic residuein F~ |
x(@)=
-1, a is a quadratic nonresiduein F~ .
Lemma 4.1 : The character y:F — His a group homomorphism
between the two multiplicative groups .
Proof : Note that the product of two nonzero quadratic residues or the

product of two quadratic nonresidues is a quadratic residue , whereas the
product of a nonzero quadratic residue and a quadratic nonresidue is a
quadratic nonresidue . From this it is immediate that y(a b) = y(a) y(b) for

all a, bin F"and the lemma is established. O

. +1 . . -1
Corollary 4.1 :InF there are precnselySTquadratlc residues andST

quadratic nonresidues . Moreover Z x(@)=0 .

aefr"
Proof :From Lemma 4.1 , the kernel of y consists of the quadratic
residues in f"and the only other coset of y consists of the quadratic
F'|=s-1,it follows that 7" has

nonresidues . Since the cardinality of 7~ ,
s-1 . . s-1 . . .
Tquadratlc residues and Tquadratlc nonresidues . Since the zero

element 0 inFis also a quadratic residue the total number of quadratic

: . . s+l . .
residues in F 1ss7and the corollary is established . O
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Lemma 4.2

i) Whens= p"=1(mod4)then -1 isa quadratic residue in F".

ii) Whens= p"=3(mod 4)then -1 is a quadratic nonresidue in F .
Proof :Let x be a primitive element (generator) of the cyclic group F*.
Since the order of F* is s-1 we conclude that »*/=7. Hence
(x"P?-D(x“"?+1)=0. Since F is a field and the order of x is s-1 we
conclude that x*”?+1=0 orx*"?=-1.Whens =1(mod4)thens=4k+1
for some integer k.Then x®"?=x*=(x*)=-1 and -1 is a quadratic
residue establishing (i) . When s=3(mod4) then s=4m+3 for some

integer m.Then x*"?=y""=_-1 and x is a quadratic nonresidue

establishing (ii) . O

Corollary 4.2

i) Whens = p"=1(mod4)then y(-a)= y(a) forall a inf".

ii) Whens = p"=3(mod 4)then y(-a)=-y(a)forall a inf".

Proof :Using Lemma 4.1 , for any aeFwe have

y(-a)= y(-)(@)= y(-1)y(a). When s=1(mod4) , y(-1)=1 and when
s=3(mod4) , y(-1)=-1 by Lemma 4.2 and the definition of y . From this

both (i) and (ii) follow completing the proof . O

In the following it will be useful to extend the definition of the
character y to all of F by placing y(0)=0,where the first 0 is the zero

element of F' and the second zero is the real number 0 . With this extended
definition we have y as a map from F to the set{-1,0,1}. The following

lemma will be most helpful in establishing our first main result .

Lemma 4.3 .'z;((b))((b+c)=-l,ifc¢0.

beF

Proof : x(0) y(0+c)=0 .SinceFis a field , whenb=0 ,p” exists .
Letz=p"'(b+c).Thenz #0whenb #-c,andz is the uniqueelement inF
such that bz=b+c.LetK={ z=p'(b+c) :beF ,b#-c }.We note
that K = F*-{1} ,where 1 is the unit element of . Note thatp”’(b+c)# I
for anyb € ', for otherwise b+c=5b from which ¢=0,a contradiction .
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HenceK ¢ F"-{1}.Next, letxe F"-{I1}. Defineb=c(x-1)" . Thenb =0,
for otherwise ¢=0 or x=1,neither of which is the case . Moreover
plb+c)=¢"'(x-Dfc(x-1)"+c]=1+(x-1)=x from which we conclude
thatxe K .Hence F'-{1}c K .InallK = F"- {1} .Now ,

D x)y(b+c)=> y(b) y(b+c)= > x(b)x(bz) since

beF befF" zef {1}

K=F"-{1}. By Lemma 4.1, y(bz)= y(b) y(z)and thus
D) y(btc)= > [x®)] x@) = > x@=Y x(2)-x(1)=0-1=-1,

beF zep {1} ZINF*-{1} zef"

using Corollary 4.1 . O

A real matrix M of order n is called skewsymmetric if and only if

M =-M'".Tt is clear that any skew symmetric matrix has each of its
diagonal entries equal to zero. Recall that a Hadamard matrix H of order
n is called askew Hadamard matrix if and only if H =1,+S,where S

is a skew symmetric matrix . Clearly to obtain a skew Hadamard matrix
we need a skew symmetric matrix whose off diagonal entries are +1 or -1.

We now introduce a matrix Q of orders= p" , pan odd prime , and
study its properties in the lemmas below . This matrix Q will play a crucial
role in both Paley constructions. The definition of Q is based on the Galois

field F of order s = p", pan odd prime and uses the character y defined on

F: letFZ{ O Qs Qs ovr O }be a listing of the s elements of F
withg = 0.Define
O=(q; )y : q;= x(a;-a:) (3.1)

Lemma 4.4 :The matrix Q is a matrix with entries in the set {-7,0,1}.
Whens = p"=1(mod 4) then Q is a symmetric matrix . When
s=p '=3(mod4) then Q is a skew symmetric matrix .

Proof :The first statement of the lemma follows from the definition of
the character y .
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Moreover

-¥(ai-a;), when p"=3(mod 4) ,
qij:Z(aj_ai):Z((_])(ai_aj)):
X(ai-a;), when p"=1(mod4) ,

4, when p"=3(mod4) ,

q, whenp" =1(mod4) ,

using Corollary 4.2 . This completes the proof . O

The following notation will be useful and will be employed throughout :
J e Will denote a matrix of ordermxneach of whose entries is +1 . We
simply write J when its dimension is apparent from the context.
Lemma 4.5 : Q satisfies the following :

1) QQ,:SIS_J’
1) 0J=J0=0,
Proof

i) Let Q'QO=B=(b;), then
b; = inner product of the i-th row of Q with the j-th row of O

=26],-k 9 — z;((ak—a,»);((ak—aj)=s-1ifi=j ,and equals -1
k k
ifi # jusing Lemma 4.3 and takingb = ¢, - ¢, andc = ;- ; # 0'in
that lemma . This establishes (i).
i) QJ = 0follows from )" 7(a;- ;) =0 using Corollary 4.1 . O
j

We now use the matrix Qdefined in (3.1) , to define the following
matrix which is of major importance in the Paley constructions :

( 0 - JIXSJ (32)
S =
Jsxl Q (s+1)x(s+1)

Lemma 4.6 : Lets=p" , pan odd prime , with p =3 (mod4).Then the
matrix S defined in (3.2) has the properties :

i) §'=-S,namely S is skew symmetric ,

i) SS=s7,,.

Proof
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1) This follows from Lemma 4.4 , since Q is skew symmetric when
p=3(mod4).
' 0 _]1 Xs 0 ]1 Xs s Q/
i S = B L e
]sxl Q _/sxl Q Q QQV‘]:X:
using Lemma 4.5 (i). This completes the proof . O

We are now ready to give the first Paley construction (the construction
outlined in statement (P1)) .

Theorem 4.1 : [The First Paley construction ; Paley (1933)]

Lets=p" ,pan odd prime , with p=3(mod4). Then the matrix
H. =1,.,1S, where § is defined as in (3.2) is a skew Hadamard matrix
of orders+1.

Proof
HH=1+S)+S)=1+S+S8"+S8'=1+S8-S+s],,=(st1)],,,, using
Lemma 4.6 . Hence H is a skew Hadamard matrix of orders+/. This

completes the proof. O

We illustrate Theorem 4.1 by constructing a Hadamard matrix of order
28 . This presented in the following example .

Example 4.1 :To make the presentation self contained we recall some

definitions from the second part of this paper . In addition we will require
the Remainder Theorem [Theorem 3.2] and two other theorems quoted
below ; the proofs of the latter two theorems may be found in any standard
book on abstract algebra which discusses Galois fields, for example,
Herstein (1996) .

Throughout p will denote a prime, n > / will be an integer and lets = p" .
A polynomial f{x)in the polynomial ring 7, /x/ will be called reducibleiff

Jx)=g,(x) . g,(x) for some g ez, [x] with degree g, < degree f for
i=1,2 .Otherwise fis calledirreducible. Moreover, f(x) is called monic
iff the coefficient of its highest degree term is 1 . An irreducible polynomial
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fix)inz ,[x] is called primitive iff f(x)divides the polynomial x" -/ for
m = s -1 but does not divide x" - I for any msuch that/<m<s-1 .
The importance of irreducible polynomials stems from the following :
(GF1) letg(x)in Z,[x] be any monic irreducible polynomial of degree
n,

(GF2) letF ={ fx) : fix)ez,[x] ,degree f{x)<n-1 }
Then the underlying set F under mod( p , g(x)) arithmetic is a Galois
field of orders .We write GF(s) as a shorthand for the Galois field of
ordersand it denotes the pair (F, mod( p, g(x))) where g(x) is
defined in (GF1) and F in (GF2).

Let /"= F-{0} .We have mentioned in the second part that f"is a
cyclic group under the multiplication inF . The importance of monic
irreducible primitive polynomials is due to the following :

(GF4) if the monic irreducible polynomial g(x) in (GF1) is also primitive
then the cyclic group F” is generated by the polynomial g(x)= x in F under
mod( p , g(x)) arithmetic . In fact F has ¢(s-1) generators, where ¢ is
the Eulerg- function, and F"= { X : 0<i<s-2 } .Thus ' € F’is
also a generator of f iff

t<s-1 andtis relatively prime tos- /.

The above discussion raises two questions :
Question 1: How does one find monic irreducible polynomials

g(x) inZ,[x] of degreen?
Question 2: How does one find monic irreducible primitive
polynomials in Z , /x/ of degreen ?
Let us consider the special polynomial O (x)=x"-x . An answer to both
questions can be given in terms of factorizingQ (x) inZ,/x/ . The answer
is not too satisfactory, as we shall see, because often QO (x)is very difficult

to factorize .
Theorem A :(i1) Letg(x)be any monic irreducible polynomial of degree

dividingn . Then g(x) dividesQ, (x).
(i)  The polynomial O (x) equals the product of all monic irreducible

polynomials whose degrees divide » .
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(ii1) The number of monic irreducible polynomials of degree nis equal to

[¢(s-1)]

——— where ¢ is the Euler ¢ - function .
n

The next result reduces the labour involved in checking that an
irreducible polynomial of degree n is primitive in certain cases .
Theorem B : Suppose thatp=3(mod4) .Letg(x) be a monic
irreducible polynomial of degree 7 .Consider the Galois field
GF(s)=( F , mod( p , g(x)) .Then,
if x*”?=_] undermod( p , g(x)) arithmetic then g(x) is primitive .

We are now ready to construct ff,s using the first Paley method .
We give the construction procedure in steps . In this construction we
need to develop GF(3’)sothat n=p=3 and s=27.

Step 1. Find a cubic monic primitive irreducible polynomial in
Zs/[x] . At first glance this step seems easy . According to Theorem A
we need to factorize Q,(x)=x"-x into irreducibles of degree
dividing 3 . The polynomial we seek is among the factors . Now
x7-x= x(x"-1) (x*+1)and by the Remainder Theorem x'°-/and
x”+1 have x-1 and x+1 as factors respectively . Upon division by
x-1 and x+1 we are left with two lengthy 12 degree polynomials

which are indeed very difficult to factorize . So we abandon this
approach and try a different strategy .

This strategy works well when 7 is small and prime . We now present
the strategy as a sequence of problems and solutions .

A cubic monic polynomial in 7, /x/ has the form :a +b x +c¢ x” + x’ with
a , b, c inZ;. Hence there are precisely 27 such polynomials .
Problem 1. Find all the cubic monic reducible polynomials in z; /x/ .

Solution . Using the Remainder Theorem it may be verified that the list
of 19 monic cubic polynomials are all reducible :
(1) Aox Prx Fxs XFexN Fex-x xSt X
(ii) -1l XL PAx+l XX -x+l XX tx-l KA -x-1

(111) x3+1,' x3-x2-1; x3+x2+x+1; x3+x-1 .

In fact g(x) is in (i) iffg(0) = 0 ; q(x)is in (ii) iff g(1) = 0 and g(x) s in (iii) iff
q(2)=0.

Problem 2. Find all the cubic monic irreducible polynomials in 7; /x] .
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Solution . The purpose of Problem 1 was to eliminate the 19
Monic reducible polynomials of the possible 27 monic cubic
polynomials . The remaining 8 must be monic irreducible
and hence any of them is suitable to develop GF(3’). We
list the 8 in 2 groups :
(PI) x3_x_2,. x3_x2_2,. x3+x2-X+1,’ x3_x2+x+]
(NPI) x3-x2-x-],‘ xj-x-],‘ x3+x2+x-],' x3+x2-]
Again the Remainder Theorem may be used to verify that the 8
polynomials listed in (PI) and (NPI) are irreducible .
Problem 3. [This problem addresses Step 1] . Find a monic cubic
primitive irreducible polynomial in z; [x/] .
Solution . The polynomial we seek is among the 8 polynomials listed
in the solution to Problem 2 . By Theorem A (iii) there are
#(26) 12
3
There is no quick method of identifying which 4 amongst the 8 are
primitive . We resort to a well known mathematical technique : trial and
error . We simply pick one of the 8 listed polynomials and apply Theorem
B to it and continue on until we are succesful . In this way we find that the
4 polynomials listed in the group (PI) are primitive and the remaining 4 are
not. As an illustration let us verify that the irreducible polynomial

g(x)=x"-x-2is primitive. Consider GF(3’) under mod(3 , g(x))
arithmetic . Then under this arithmetic we have the reduction relation
(RR): x'=x+2
Now undermod (3 , g(x))arithmetic we have
x?=(x')" =(x+2 )" using (RR)
=x'+2x'+2x+1 ,expanding
=x(x+2)+2(x+2)+2x+lusing (RR)
= x2 +2
Hence x"= x(x’+2 )= x'+2x= x+2+2x using (RR) .
= 2 = -]
That is, x"* = -1and by Theorem B, g(x) is primitive .
The next problem is now unnecessary but it illustrates Theorem A .
Problem 4. Factorize Q (x)=x""-x to illustrate Theorem A .

= 4 such cubic primitive irreducibles .

Solution . In this case n = 3. Thus the only irreducibles of degree
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Dividing n=3 are of degree 1 or 3 . Those of degree 1 are
Clearly x , x-1, x+1 and those of degree 3 are listed in
(PI) and (NPI) . Hence

(x+1) (x*-x-2) (X'-x"-2) (X +xX"-x+1) (X-xX"+x+1)

(-1 (X-x"-x-1) (X’-x-1) (P +x°+x-1) (X +x°-1)
Indeed the factors in the first line multiply out tox”*+/and those in the

x26_I:

second line multiply out to x"* - 7
Step 2. Select a monic cubic primitive irreducible polynomial and use it
to develop GF('3’ ). Write the elements of F in both the additive

form and as powers of its cyclic generator x .
This is the second crucial step in the construction process . We choose the

cubic primitive irreducible polynomial g(x)= x’-x-2. The underlying set
F of GF(3’)is thenFZ{ ax’+bx+c : a,b,c ez }‘ ,and
Fundermod( 3, g(x)=x'-x-2 ) arithmetic is a Galois field of order 27.
To facilitate computation under mod(3, g(x)) arithmetic we will, as before,
use the reduction relation :

(RR): x'=x+2.
Since g(x) is primitive the cyclic group F = F -{0}has x as a generator .

Hence F*Z{ X o 0ZLiL25 } .For convenience, we rename the 27
elements of F as follows:
a.;=0(zero element of F ) , ¢ =x-=1(unit element of F/ ) ,and in

general g, = x' , 0<i<25 .Before we develop the additive (polynomial)
and power form for each element of F ,a very crucial step for the Paley
construction, let us demonstrate a particular calculation by finding the
additive form ofy’ e~ .We use (RR) as often as necessary. Now
FEX(F)=X(xt2) =X +2x =x+2+2x=2x"+x+2. Thus the
additive form of yx’ is 2x’+x+2. Using this method we can develop the
additive form of each x' .Since g(x)is primitive, we are guaranteed that we
can do 26 such calculations in succession and thereby exhaust f* obtaining

the additive form of each element of /' .In the table below we record the
27 elements of F'in their additive and power forms and identify each with
the appropriate symbol ¢; .
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Elements of F in the additive and power form
2 7 2
05_1:0 tg —v8-2¢2:2 oc”:.\'l/ =2v 7 +x
N 9 18__2
o =t = t,=r =r+1 o=t T =v T+ 2+
=y 10__2 19_o 2
o= U=t =V U=t =2r7+2yr+2
2 ) , ,
o, = all:x“:.\'“+.\‘+2 oy v 2022y 24141 (T)
3419 2 .2 2 2
Rg=vm=r+s @), =X 12 4242 o a2a?sl
o —viZiox _13_o 22_o9. .9
4 XL ) =v =2 0y, =t T =21+2
— -S_'7 .2 19 14 23 2
Rg=X" =X +X+s @ ==y 0y, =¥ 7 =217+ 2x
_,.0__2 _ 15 2 24 2
S +1 o = =2¢2 0y, =" =2y +2v+1]
v/ _2.,9,.9 16 25 2
O, =X =X +axta @, =V =2v+1 oy =x =217 +1

Step 3. Construct the Paley matrix O =(g,) of order 27 defined in (3.1)

of part three .
Recall that the entries g, are defined as follows :
0 if i
’If;' _J1 1}‘ i=j and o -a, is  a quadratic residue in F
-1 if i# and o-o is a quadratic nonresidue in F .

The Paley matrix Q will be presented in partitioned formQ=/ Q,|Q, /,
where Q,is of order 27x15 and Q, is of order 27x/2 at the end of this

example . The vertical and horizontal margins will be labelled by the
elements ¢; of F' .Crucial to developing the entries of Q is table (T) of

Step 2 . We illustrate how table (T) helps in developing Q by solving the

next problem .
Problem 5. (i) Compute the entriesq, ,,andg, ;ofQ.

(i) Explain whyg, ,=-q foralli , j
Solution .
O Nowgrn-as=x"-x"=(2x+2)-(2x’+x+2)=x’+x=x"",using table
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(T) twice . Since x'’is a quadratic residue in F , ¢ ; ,,=1.

Similarly, gs- .= x*-x*' =2 x> +2)-(x’ +2x)= x’- 2x+ 2= %' | using table
(T) twice . Since x'’is a quadratic nonresidue inF ,q,,=-1.

(i) Nowg,;-a;=-(ai-a;). Alsox'’=-Ifrom table (T) . Suppose that
ai-ai=x". Theng;-a;=-(a;-a;)=x".x"=x"".Thusk +13is even iff
k is odd and k+13 is odd iff k is even. Henceg,=-q .

Step 4. We are now ready to construct 7/ ,; the Hadamard matrix of order
28 .
First we form the matrix S of order 28 defined in (3.2) of part three :

[ 0 - J1x27J
S= ,
J27x] Q

where Q is the Paley matrix developed in Step 3 and J,,,, is a vector each of
whose entries is +1 . Finally set
Hoxs=1xtS,

where J,41s the identity matrix of order 28 . Due to Theorem 3.3.1, we
know that ff,, is a Hadamard matrix of order 28 . From Problem 5 (ii), we
know that Q is skew symmetric and hence so is.S . Thus by definition, the
matrix f ,s constructed here is a skew Hadamard matrix . It is interesting to
note that each diagonal entry of /7,5 is +1 .
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QG 0| o o |a | % Gy | En % %y
- - - - + + + - -
T . - + + + |- - + - +
+ 0 |+ . + |- . - + |+ . +
- - o - < |- + |+ R - - s
~ ~ ~ ° — - ~ - - - — - ~
FOE - o |- + - - + |+ - -
- - |- + <+ o <+ - [+ R - - +
T T I R -l = =
- + |- - + |- = o |+ + |+ - -
- ~ - ~ - - - o - - - -
+ - - + - - - - -+ + - - -
- . |- + - s 0+ . - + |- s .
- - + - - + - -+ + 4] - -
- - - - - - - - - - 0 -
- - |- - < |- - |- + |+ + 0
- * - * - - - * - * - - -
- + |- - - - + . - - - &+ +
- - - - - - - - - - — - -
+ + - + - - - - - - - -
- - - + - - + - -+ + + - +
- - - - - - - - + - - -
- + - - - - - - + - - -
- - |- + =+ |- - |- - - - .
- - - - - - - - - - - -
+ + - - - - - - - - - -
- . |- + + |+ . - - + + +
+ + + - - - -
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We now develop the second Paley construction (outlined in statement
(P2)) . This construction is based on the concept of a conference matrix . A
conference matrix , hereafter called a C-matrix , is a matrix M of order n

such that the diagonal entries of M are zero , the off-diagonal entries are +1
or -1land MM =(n-1)],.Clearly , if M is a C-matrix then MM =n-1)],
so that every pair of rows (or columns) of M are orthogonal . C-matrices
were first used by Belevitch (1950) in studying the theoretical aspects of
electrical networks . Later they were studied in their own right by Goethals
and Seidel (1967) who in fact referred to these matrices as conference
matrices . Since the second Paley construction depends on the existence of
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C-matrices we state two results below without proof which shed some light
on the question of their existence.

Let mbe a positive integer and suppose m=5,’( p, p, p; ... p, ) Where
p,(1<i<k) are distinct prime numbers . Then the number
t=p, p, p; ... p, is called thesquare freepart of m.The following two -

square theorem is a well known number theoretic result and includes the
celebrated two square Fermat theorem as a special case . We refer for the proof
to Hardy and Wright (1954) .

Theorem 4.2 : [Two Square Theorem]

A positive integer m = x’+ )’ , for some integers x and y if and only if
the square free part of m consists of prime numbers each of which is
congruent to /(mod 4). The connection of the two square theorem to C-

matrices occurs via the next theorem. For a proof of this next theorem see
Raghavarao (1971) and Wallis et al (1972) .

Theorem 4.3 : A necessary condition for the existence of a square
rational matrix M (i.e. M has rational number entries) of ordern = 2 (mod 4)
satisfying M'M =m [, for some positive integer m is thatm = 4’ +p’ for
some integersa and b.

A clear inference from Theorem 4.2 and 4.3 is the following :

Corollary 4.3 :A necessary condition that there exist a C-matrix of order
n=2(mod4)is that the square free part of 7n-/consists of prime numbers
each of which is congruent to / (mod 4).

From Corollary 4.3 we conclude that there are many values of
n=2(mod4) for which a C-matrix of ordern does not exist . For examples
C-matrices of orders n=22,34,58,78,...,etc .do not exist . For a listing
of orders <1000 for which C-matrices exist and those orders excluded by
the above results see Wallis et al (1972).

For certainn = 2 (mod 4) a C-matrix of this order n always exist . Indeed

the developments earlier in this part guarantees this . To ferret out this
pleasant situation we adjust the definition of § given in (3.2) .
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Consider the matrix T of order s +/ defined as follows :

0 J]xs (33)
T = Ts+1 =
Jsx] Q (s+1)x(s+1)

where the matrix Q1is defined in (3.1) .

Lemma 4.7 :Suppose that the order s=p’ ,pan odd prime , of the
Galois field F satisfiess=1/(mod4).Let T be the matrix of orders+/
defined in (3.3). ThenT is a symmetric C-matrix .

Proof :Sinces=1(mod4) ,Qis symmetric by Lemma 4.4 and hence so
is T'. Further , as in the proof of Lemma 4.6 ,

s 0’

T’T=[ _]= s [, ,using Lemma 4.5 (i) . Hence Tis a C-
0 00+ Ju

matrix , completing the proof . O

We remark that the matrix S of orders+ /defined in (3.2) is also a C-
matrix but it is not symmetric . The second Paley construction requires a
symmetric C-matrix and this necessitates the adjustment of S to7 as done

in (3.3).

Example 4.2 : We construct the symmetric C-matrix 7. First
GF(5)={0,1,2,3,4} under +; , *; . The quadratic residues of GF(5)
is the set QR={0,] 4 }and the quadratic nonresidues is the set{ 2,3 }
Thus

0o + + + + +
+ - -+

+ + - -+
+ 0 + - -

+ + 0 + - -

O=|- + 0 + -| and T4 =

+ -+ 0 + -
- -+ 0 +

+ - - 4+ 0 +
+ - - F S5x5

+ + - -+ 0

It may be verified that 7, T =Ty Ts=3 I
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Example 4.3 :We construct the symmetric C-matrix 7,,. First, as in
Example 3.2, we consider

GF(9)={ 0, x =1, x'=x, ¥ =x+1, ¥'=2x+1, x'=2, ¥’ =2x,
X=2x+2, Y =x+2 } under mod (3, x’+2x+2 )arithmetic . The set
of quadratic residues of GF(9) is OR ={ 0,1, x+1,2,2x+2 } and the
set of quadratic nonresidues is{ x, 2x+1, 2x, x+2 }. Thus the matrix

0 =(q;)of order 9 defined in (3.1) is displayed below (the horizontal and
vertical margins are indexed by the elements of GF'(9) ) :

0 1 x x+1 2x+1 2 2x 2x+2 x+2

o o 1 a1 1 a1 1 2 ] ]

] 1 0 -1 -1 -1 1 1 -1 ]

O — x+1 |1 a1 1 0 -1 -1 4 ] ]
S ox+1 |1 a1 1 -1 0o 1 1 ] 1
? 1 1 1 -1 1 0 -1 -l 1

ox (-1 1 -1 -1 1 a1 0 1 ]

ox+2 |1 a1 a1 1 1 a1 1 o0 1

2 |11 011 a1 a1 1 0

Then the symmetric C-matrix 7,,defined in (3.3) is obtained fromQ by

bordering it as follows :
0 I
Tiw = .
] Q 10x10

Theorem 4.4 : [Second Paley Construction ; Paley (1933)]
1) If a symmetric C-matrix M of order n exists then the matrix
1 1 1 -1
H= QM + X7, (3.4)
1 -1 -1 -1

where ® is the Kronecker product , is a symmetric Hadamard matrix of order
2n.
i1) If T is the symmetric C-matrix of order s + / defined in (3.3) ,where

s= p"=1(mod 4)and p is an odd prime , then

1 1 1 -1
H= ®T + ®J7,
1 -1 -1 -1
is a symmetric Hadamard matrix of order 2s + 2.
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Proof : (ii) is immediate from (i) and Lemma 4.7 . Hence we prove (i) .
Note that H defined in (3.4) can be rewriten as

M+1 M-1
H = . Now by direct multiplication ,
M-1 -(M +1)
M+ M-1 M'+1 M'-1
HH' = = 2nl,
M-1 -(M +1) M'-1 -(M'+1)

performing the block multiplication and usingM = M'andMM =(n-1) ], .
O

The Paley constructions given in Theorems 4.1 and 4.4 form the
backbone of a number of further construction results on Hadamard matrices
based on Galois fields which have been developed since Paley's initial
effort in 1933 described here . At this point we simply summarize some of
these additional construction results below . We emphasize that these are
actual constructions when the stated conditions are met , as are the Paley
theorems , and not merely existence statements . For detailed proofs of
these results see Hall (1967) . As in first part , the constructions below are
of the recursive type , and use the Kronecker product when appropriate .

Theorem 4.5 :[Williamson (1944) ; Generalization of Paley's second Construction ]
Ifs=p'=1(mod4) , paprime and if a Hadamard matrix H of order n >/
is given then a Hadamard matrix of order n(s+1) can be constructed .

Theorem 4.6
i) Letn=2"k; k; ... kn -Suppose that either ;= p/" +1=0(mod4) or
ki=2( pi+1), pi'=1(mod4) for each i.Then a symmetric Hadamard

matrix of order n can be constructed .
i1) Let a skew Hadamard matrix of order n be given . Suppose that

s=p'=3(mod4),where p is a prime . Then a skew Hadamard matrix
of order n(s +1)can be constructed .

i) Let n=2" k; k, ... k, where each f,= p/' +1=0(mod 4) with p,
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prime . Then a skew Hadamard matrix of order » can be constructed .

iv) Let a skew Hadamard matrix of order n be given . Then a Hadamard
matrix of order n(n - 1) can be constructed .

v) Let a skew Hadamard matrix of order » and a symmetric Hadamard
matrix of order m = n+4 be given. Then a Hadamard matrix of order
n(n+3) can be constructed.

vi) Let two Hadamard matrices of orders 5, > I and p,> I be given . Let

p be a prime such that p” = 1 (mod 4) . Then a Hadamard matrix of order
nin.( p'+1) p’ can be constructed .

vii) Let two Hadamard matrices of orders 5,> 7 and 5, > 1 be given .
Suppose that 7 is a positive number such that n = p’’+ I for some
prime p,and n+4 = p’;+1 for some prime p,.Then a Hadamard

matrix of order 5, 5,n(n+3) can be constructed .

We now give some examples to illustrate the two Paley constructions .

Example 4.4 :To construct a Hadamard matrix of order 8 , we observe
that 8=7+1 . The quadratic residues of GF(7)={ 0,1,2,3,4,5,6 } is the
set OR ={ 0,1,2,4 } and the quadratic nonresidues is the set{ 3,5,6 }
Using (3.1) , and (3.2) we construct the matrix Q and the matrix S

o - - + - + +

+ 0 - - + - +

+ + 0 - - + - 0 -J 7
o=- + + 0 - - +| , §=

+ -+ + 0 - - J i Q7 ),

-+ -+ + 0 -

- -+ -+ 4 0y

Finally , by Theorem 4.1 , ;f4= 5+ S :
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+ o+ 4+
1
1 1

\ +
+ )

1 +

+

Hs=

+ o+ o+
+ o+ o+
1
1
_|_

+ o+ o+

+ 4+ o+ + + o+ o+ o+

+ o+ o+
1

- -+

+ 8x8

Example 4.5 :To construct a Hadamard matrix f7,, of order 12 , there
are two ways . First we observe that 12=11+1 . The quadratic residues of
GF(11)={0,1,2,3,4,5,6,7,8,9,10 } is the set

OR={0,1,3,4,5,9 } and the quadratic nonresidues is the set
{ 2,6,7,8,10 }.Using (3.1), and (3.2) , the matrices Q and S are

o - + - - - + + + - +

+ 0 - + - - - + +

|
+

|
+

1

1

-+

+ o+ o+

+ o+ 4+
+ o+ o+
+ o+ o+

+
1
+

+ o+ o+

_|._

+

+ o+ o+

+ + 0 1Ix11
-J i

J1ix1 O

12x12
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Thus , by Theorem 4.1 ,fH,,=7,,+S is the skew Hadamard matrix
displayed below:

Hp; =

+ 4+ + + + + + + 4+ + o+ o+

+

+

1

1

1

_|_
+ o+ o+

+ o+ o+

+ o+ o+
1
1

+ o+ o+
Vot

+ o+ +

+ -+ + 12x12

Now we construct A ;, by the second Paley construction . As 12=2(5+1),

where 5 is a prime and5+/=2(mod4),we can use Theorem 4.4 and
Example 4.2 to construct 7/ ;,. From Example 4.2, and Theorem 4.4 (ii) ,

0

H
(=
I
+ 4+ o+ +

+

+

0
+

+

+
+
0

—+

+

+ < 4+

+

+

0
+

+

+

+
0

6x6

, and H12={

Tst1s

T6’[6J
Ts-1s -(Ts+1s)

Hence FH,,is the symmetric Hadamard matrix displayed below :
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+ + + + + + - + + + + 4+
+ + + - -+ + - + - - +
+ + + + - - + + - + - -
+ -+ + + - + - + - + -
+ - -+ + + + - - + - +
+ - -+ + + + - -+ -
Hp =
- + + + - - - - - -
+ - - -+ - - -+ + -
+ + -+ - - - - - - + +
+ -+ -+ - -+ - - -4
+ - -+ -+ - 4+ + - - -
++ - -+t - - -+ + - Jpun

Example 4.6 :We construct a Hadamard matrix of order 20 by the
Second Paley construction . As 20=2(9+1), where 9 is a power of a prime
and 9+/=2(mod4),we can use Theorem 4.4 and Example 4.3 to
construct f,, as follows (we display 7,, below, it is obtained from
Example 4.3) :

D + + + + + + + + +

+ 0 + - + - + - + -

+ + 0 - - - + + - +

O 1+

+ o+ -+ 0 - - - 4 =
TlO: + - -+ -0 + + + -

+ + + + - + 0 - - -

+ - + - - + = 0 + +

+ + - - + + - + 0 -

S ) ST
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and then by Theorem 4.4 (ii)

H

(Tzo*‘]m
Tiw-1w

A full display of A ,, is below :

20 ©

- 4+ + F -
+ 4+ + + +
- = F -
+ 4+ + - +

122

T10'110J
(Tt 1)

- - - + +
- + + + -
+ - - + +

<

/

20x20
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