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On Some Methods of Constructing Hadamard Matrices 
 

Abdurzak M. Leghwel  1   
 

Abstract 

    There are two methods , often used to produce examples of algebraic and 
combinatorial structures . One of these methods begins with at least one 
example of the desired structure at hand and then constructs further 
structures of a like kind . We call such a construction method .recursive
Another method (or methods) is to generate the desired structure simply 
after certain parameters regarding it have been specified . We shall call such 
a method of construction an initio ab method . 
        Hadamard matrices are algebraic structures in the sense that they form 
an important subclass of the class of matrices and hence must conform to all 
the algebraic  rules obeyed by matrices under the usual operations of 
addition and multiplication . On the other hand , Hadamard matrices are 
combinatorial structures as well since the entries +1 and -1 of which the 
matrix consists must follow certain patterns . Thus one expects that one 
should be able to utilize both type of constructions methods , recursive and 
ab initio , to construct Hadamard matrices . This is indeed the case and in 
this paper we review some of these construction methods for Hadamard 
matrices .                                                                                                                              
        In the second part we will introduce the concept of the Kronecker 
product and develop a recursive construction method for constructing 
Hadamard matrices based on it . Two important ab initio methods are 
discussed in the fourth part of this paper. These  methods are due to Paley 
(1933) and is based on Galois fields . Hence some Galois field basics are 
presented in the third part also.  

Keywords :  Hadamard Matrix, Kronecker product, Galois fields. 

1.   Introduction 
    A (-1,1) - matrix is a matrix whose only entries are the numbers  -1 or 1 . 
In this paper for the most part we will be interested in special (-1,1)-
matrices called Hadamard matrices . 
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   A matrix Hadamard  of order n  is an nxn  (-1,1)- matrix H,  satisfying 
,In=HH=HH n  where H  denotes  the  transpose of H and I n  is the 

identity matrix of order .n  If H is a Hadamard matrix, it follows from the 
definition that the set of row vectors of H,  as well as, the set of column 
vectors of H form mutually orthogonal sets . The reader is referred to [6]. 
 

2.    Construction of Hadamard Matrices Based on The                  
Kronecker Product 

     In this part we present the construction of Hadamard matrices employing 
the Kronecker product . This construction is recursive and requires at least 
one Hadamard matrix at hand in order to utilize it . It is , therefore , most 
useful when employed in conjunction with some of the other techniques for 
constructing Hadamard matrices to be developed later . We begin by 
introducing the concept of the Kronecker product of matrices and some of 
its basic properties . 

:Definition If )a(=A ij  is a pxq  matrix and )b(=B ij is a rxs  matrix , then 
their product Kronecker BA is the prxqs matrix given by 
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    The basic properties concerning how the Kronecker product relates to 
the matrix operations of addition , multiplication , scalar multiplication and 
transpose are given in the following theorem . 
 

:.12Theorem Let )a(=A ij  be a pxq  matrix and )b(=B ij  be a rxs
matrix. The Kronecker product B  A  is a prxqs  matrix with the following 
properties : 
  i)  B) (  A =  B  A) ( =  B)  (A    for any real number ,        
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 ii)     B)  A(  +  B)  A( =  B  )A+A( 2121  and 
         ,)B  (A  +  )B  (A  =  )B  + B(  A 2121   
iii)    ,B B   A A  =  )B  A( )B  A( 21212211   where the matrices Ai  and Bi

respectively are compatible for multiplication , 
iv)    ,B  A  =  )B  (A   
 v)   C)  (B  A  =  C  B)  (A   for any matrix  ,C   
vi)     ,B   A  =   )B  (A -1-1-1  if A-1  and B-1 exist . 

:Proof We will prove property (iv) , and we refer to a standard text in 
linear algebra for the rest . 
Since 

□ 
The relationship between the determinant of the Kronecker product of 
square matrices and the determinant of individual matrices is given in the 
following : 
 

:.22Theorem  For any two square matrices A of order m  and B of order 
.   ](B)[ ](A)[ = B)  (A       ,n mn detdetdet   

:Proof We prove the theorem for the case when A  has order . 2=m  
 

Then . 
aa

aa
=A

2221

1211

2x2










If all 0=aij  then the theorem is clearly true . Hence 

, without loss of generality suppose that . 0a11   Then 

. 
B a   B a

B a   B a
  =B  A

2221

1211











  Further , we may also assume without loss of 

generality that . 0(B) det  Then by [6, Theorem 3.1] , 
B)] a  )B a( B a  -  B a( [B)]  a( [ = B)  (A 12

-1
11212211 detdetdet   
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                  B)] a a a  -  B a(  [B)]  a(  [ = 12
-1
11212211 detdet  

                  B)] a a a  - B a( B a [  = 12
-1
11212211det  

                  )B ( )a a  - a a(  =]  B  )a a  - a a ( [   = 2n
12212211

2
12212211 detdet  

                  ] (B) [   ] (A) [  =]   B [  ][A  = 2n2n detdetdetdet and the theorem 

is proved for the case .    2=m                                                      □ 
 
   From the viewpoint of Hadamard matrices , the properties of the 
Kronecker product immediately imply the following result : 

 
:3.2Theorem If H 1  and H 2  are Hadamard matrices of orders n1  and n2  

respectively , then HH 21  is a Hadamard matrix of order .nn 21  
:Proof  Let H 1  and H 2  be a Hadamard matrices of orders n1  and n2  

respectively . Then 
HH  HH  =  )H  H(  )H  H(  =  )H  H(  )H  H( 221121212121    

                                .  I  n n  =  I  n  I n  = nn21n2n1 2121
          □ 

 
:.1.2Corollary Since there is a Hadamard matrix of order 2 , namely  

 ,
1-1

11
  = H 2 







  then there are Hadamard matrices of order 2n  for every 

positive integer . n     
:Proof  ,H  . . . .  H  H  = H 2222n  the Kronecker product of H 2  with 

itself extended over n  factors  gives the desired Hadamard matrix of order 
. 2n                                                                                                 □ 

 
:.22Corollary If H  is a Hadamard matrix of order  ,k for some 

positive integer k  then there is a Hadamard matrix of order k  2n  for every 
positive integer . n  

:Proof Let  ,H  H  = H 21 n  where H  is a Hadamard matrix of  order  ,k
and H 2n  is  the Hadamard matrix of order 2n  given in Corollary 2.1 . Then  

by Theorem 2.3, H 1  is a Hadamard matrix of order .   k  2n □ 
 

:.22Example Let H 2  be the normalized Hadamard matrix of order 2 . 
The matrix  
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


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  = H  H  = H

4x4

224 is a Hadamard matrix of order 4 .  

By Theorem 2.3,  we conclude that H  H  H  = H 44464   is a Hadamard 
matrix of order 64 . 
 
    Theorem 2.3 will be more helpful when we apply it to Hadamard 
matrices constructed by other methods . We discuss some of these other 
methods below . 
 

3.    Some Galois Field Basics 
 
   Galois fields will play an important role in the construction of Hadamard 
matrices. Thus we take a closer look here at some Galois field basics 
including a recipe to construct such fields . For the proofs of results stated 
in this part of the paper we refer to Herstein (1996) . 
     Let F be a field and let n  be any positive integer . For Fx  we define 

x + . . . + x + x + x  = x n n ( terms in the sum ) . A field F  is said to have 
sticcharacteri   ,m  if there exists a smallest positive number m  such that

0=x m  for all . Fx  If no such positive integer m exists then F  is said to 
have characteristic zero . 
  Let Z  be the set of integers , and 2n   be a fixed integer . For any

 ,Zb  ,a  we define n) ( ba mod  if and only if n  divides . b) - (a One may 
check that   is an equivalence relation on . Z  For  ,Za we let [u] be the 
equivalence class determined by u  mod .n  Then 

   Zt :   a + n t   =[u]   is called the class residue mod n  determined by
.u  

   Let Z n  be the quotient set of Z  under  . Then one can verify that 
 1]  -[n  ,. . . [2] , [1] , [0] ,    = Z n (i.e. Z n consists of n  residue classes) . 

   In the set Z n  we introduce two operations, +n  called n  addition mod  
and *n  called n  tionmultiplica mod  as follows : 

      For Z[b] [a] , n  define b]+[a =[b] +[a] n  and . b] [a =[b] *[a] n

Then we can verify that ) *   ,+    ,Z ( nnn  is a commutative ring with n
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elements, called the integers of ring . n mod In general Z n  is not a field . 
To simplify the notation we will denote the element [c]  of Z n  by . c   
 

:13.Lemma  Let F  be a field . Then either F  has characteristic zero F (
is an infinite set and F contains an isomorphic copy of the rationals) or the 
characteristic of F  is a prime number F (    p  may be a finite or infinite set 
and contains an isomorphic copy of the ring . ) Z p  
 

:3.2Lemma  Z n  is a field if and only if n  is a prime number . 
 
   Let Z n  be the ring of integers mod .n  An expression of the form 
                                      x a + . . .  + x  a  + x a  + a  = f(x) k

k
2

21_  
in an indeterminate x  with Za ni  is called a polynomial over . Z n  The 
elements ai  are called the tscoefficien  of the polynomial . Further when

k    ,0ak   is called the degree of  ,f(x)  and when [1] ,=ak  the unit 
element of f(x)     ,Z n  is called monic a polynomial . 
  Let  f(x)  :    f(x)        =[x] Z n polynomial over    Z n be the set of all 
polynomials over . Z n  Let g(x)    ,f(x)  be polynomials in .[x] Z n  The 
sum of f and  ,g denoted by  ,g(x)  + f(x)  is obtained by adding 
coefficients of like powers of .x  The product of f  and ,g denoted by

 ,g(x) f(x)  is obtained by term by term multiplication using the 
distributive law of  ,Z n  and then gathering together terms of like powers 
of . x  Under these operations [x]Z n  is a commutative ring with unit , 
called the spolynomial of ring over .Z n We will be interested in the ring

[x] ,Z p  where p  is a prime number so that Z p  is a field . In all that 
follows p  will denote a prime number . 
 

:3.1Theorem [Factor Theorem] 
   Let 0g(x)    ,f(x)   in [x] ,Z p  and Zc p  be given . Then 

i)   there exist unique q(x)  and r(x)  in [x]Z p  such that 
     ,r(x)  +  q(x)  g(x) = f(x) where 0=r(x)  or the degree of r(x)  is less than  
     the degree of . g(x)  The polynomial r(x)  is called the remainderand  
    q(x)  is called the  ,quotient  
ii)  the remainder in (i) dividing f(x)  in [x]Z p  by c-x  is . f(c)  
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    Let 0g(x)    ,f(x)   in [x]Z p  be given . We say g(x)  divides

f(x))   |  g(x)  (   f(x)  if and only  if q(x)  g(x) = f(x)  for some q(x)  in 
.[x] Z p Then g(x)  is called a  factor of . f(x)  

 
:3.2Theorem  [Remainder Theorem] 

If [x]Zf(x) p  and ,Zc p  then c-x  in [x]Z p  is a factor of f(x)  if and 
only if . 0=f(c)  
 
    A F     field Galois  is a field F  in which the set F  has a finite number 
of elements . We will denote a Galois field with s  elements by writing

. GF(s)  By Lemma 3.2 , Z p  is a Galois field  ,p))  GF( (  where p  is any 
prime number , consisting of p  elements. Let [x]Zf(x) p  be given . Then 
any 0c   in Z p  divides f(x)  since . f(x))  c ( c =f(x) -1  Hence any 
polynomial of the form 0c     ,f(x) c   in Z p  will be called an associate of

. f(x)  
   A polynomial [x]Zf(x) p  is called eirreducibl  over Z p  if and only if 
the only divisors of f(x)  are f(x)  and its associates . Those polynomials in

[x]Z p  which are irreducible over Z p  will play a key role in the 
construction of Galois fields . We now record some properties of Galois 
fields . 
 

:3.3Theorem  Let GF(s)=F  be a Galois field with s  elements and let  
. {0}-F =F*  Then  

  i)   p=s n  for some number  ,1n   and some prime .p This prime p  is the 
     characteristic of . F  
ii) F*  under the multiplication of F  is a cyclic group . Hence there exists  
     some Fa *  such that  .   a    ,. . .    ,a    ,a    ,1=a    =F 2-s210*  Such an   
    "a"  which generates F*  is called element primitive a  of . F*  
iii) Let [x]Zq(x) p  be an irreducible polynomial over ,Z p  where p  is a  
      prime number and the characteristic of . F Then q(x)  divides . 1-x 1-s  
iv) x-xs  is  a product of all the monic  irreducible  polynomials  over 
     [x]Z p  of degree dividing ,n  where p  is the prime characteristic of F  
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      and . p=s n  
v)   There exists a Galois field with pn  elements for any prime . p  
 

:3.4Theorem  Let  a   ,. . .   ,a   ,a   ,0    = F 1-s21  be a   ,p=   s ,GF(s) n

where p  is a prime number . Then the polynomial x-xs  in [x]Z p  
factorizes into linear factors 

)a - x ( . . . . ) a - x (  ) a - x ( x  = x-x 1-s21
s . 

 
  Let F  be a Galois field with p=s n  elements . Then an irreducible 
polynomial [x]Zf(x) p  is called a polynomial eirreducibl primitive  if 

and only if f(x)  divides 1-xm  for 1-s=1-p=m n  but for no smaller . m  
  Now we give a recipe to construct a Galois field of order  ,s where

p     ,p=s n  is a prime number , and 1n   is an integer . 
When  ,1=n  by Lemma 3.2 the ring Z p  is a p) GF(  under addition and 
multiplication  mod  ,p  
When  ,2n   we consider the polynomial x-xs  in [x] ,Z p  and 
  i) Factorize x-xs  into irreducible factors over .[x] Z p  Select all the 
irreducible polynomials in this factorization whose degree equals . n  Let us 
say there are k  of them . (x)g   ,. . .   ,(x)g   ,(x)g k21  

ii) From the  sgi
,  in (i) select those (x)gi which are primitive . We can 

develop the Galois field using any of these irreducible polynomials . (x)gi

However picking a primitive (x)gi  gives a better description of the field for 
computational purposes . It actually provides a primitive element (a cyclic          
generator) for the field . From now on we will work with primitive 
irreducible polynomials . 
iii) Suppose we have chosen a primitive irreducible polynomial of degree n   
from (ii). Let us call this selection . g(x) If we cannot decide on a primitive 
one , we can simply pick any (x)gi  from (ii)    .  
iv) Let     :[x]   Zf(x)     = F p degree of  ,   1-n   f(x) i.e. F  is the set of 
polynomials of the  form x a  + . . . .  +  x  a  +  x a  +  a 1-n

1-n
2

21_  with . Za pi
Let (x)f    ,(x)f 21  be in . F To add (x)f 1  and  ,(x)f 2  we do term by term 
addition of polynomials reducing the coefficients mod .p To multiply (x)f 1
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with (x)f 2  we do the usual multiplication reducing the coefficients mod . p
Then we divide this product by  ,g(x)  where g(x)  is chosen in (iii) , and 
take the remainder as the product of f 1  with .  f 2  We call this procedure of 
adding and multiplying arithmetic g(x))    ,p  ( mod . 
v) The set F  defined under g(x))  ,p  ( mod  arithmetic is a Galois field of 
order pn . To verify this , we refer to Herstein (1996)  . 
Consider a Galois field GF(s)  of order ,s  where  ,p=s n  with p  an odd 
prime .  An element GF(s)a  is called a residue quadratic  (for short QR) 
if and only if there exists some GF(s)b  such that . b=a 2  If no such b
exists  `a`  is called a quadratic nonresidue. Note that 0 , 1 are always 
quadratic residues of . GF(s)  
     Let x  be a primitive element of the multiplicative group  ,{0}-F=F*

where F  is a p     ,p=    s ,GF(s) n  is an odd prime . Then all the quadratic 
residues of F  are in the set  .    x   ,. . .   ,x   ,x   ,x     = QR 3-s420  
We illustrate the steps (i) - (v) by developing some examples of Galois 
fields which will be useful later in this paper . 
 

:3.1Example  We construct . GF(7)=F  Since 7 is a prime number we 
take   6   ,5   ,4   ,3   ,2   ,1   ,0   = Z = F 7  under mod 7 addition and 
multiplication . The addition and multiplication tables are given below : 
 

 
+7  

 
0 1 2 3 4 5 6   *7  0 1 2 3 4 5 6 

 
 
 0 
 1 
 2 
 3 
 4 
 5 
 6 

 
0 1 2 3 4 5 6 
1 2 3 4 5 6 0 
2 3 4 5 6 0 1 
3 4 5 6 0 1 2 
4 5 6 0 1 2 3 
5 6 0 1 2 3 4 
6 0 1 2 3 4 5 

   0 
 1 
 2 
 3 
 4 
 5 
 6 

0 0 0 0 0 0 0 
0 1 2 3 4 5 6 
0 2 4 6 1 3 5 
0 3 6 2 5 1 4 
0 4 1 5 2 6 3 
0 5 3 1 6 4 2 
0 6 5 4 3 2 1 

 
 Note that 3 is a primitive element of F  and 

   .  4  ,2  ,1  ,0   =    3   ,3   ,3   ,0   = QR 420  
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:3.2Example  We construct . GF(9)  Note that  ,3=9 2  so the base prime 
is 3  and the basic Galois field we work with is .Z 3  Factorize x-x9 into 
irreducible polynomials over [x]Z 3 : 

2)+x +x( 2)+x 2 + x( 1) + x ( 1)+1)(x- x ( x = 1)+x ( 1)-x ( x  = 1) -x ( x  = x-x 2224489

By Theorem 3.2.2 , the remainder theorem , the polynomials  ,1+x=(x)g 2
1  

2,+2x+x=(x)g 2
2  and 2+x+x=(x)g 2

3  are irreducible. Of these the 
polynomial (x)g1  is not primitive since . 1-x|1+x 42  From the factorization 
of x-x9  it is clear the polynomials (x)g2  and (x)g3  are both primitive 
irreducible polynomials . We will work with . (x)g2  
Consider the set   ,[x]   Za    ,a       :   x a  +  a    = F 311 __  under 

(x))g   ,3 ( 2mod  arithmetic . Then F  has the nine elements as follows : 










 2=a  

 1=a  

 0=a,0=a

1

1

1_

:

2x

x

0

 ,   










 2=a  

 1=a  

 0=a,1=a

1

1

1_

:

2x+1

x+1

1

 ,   










 2=a  

 1=a  

 0=a,2=a

1

1

1_

:

2x+2

x+2

2

 

 By Theorem 3.3 (ii) , 
   x 2+2    ,x+2    ,2    ,x 2+1    ,x 2    ,x+1    ,x    ,1   = {0}-F =F*  is a 

cyclic group under multiplication , and x  is a primitive element (generator) 
for . F*  To verify this we calculate sucessive powers of  ,x  using

(x))g  ,3 ( 2mod  arithmetic to get:  
1+x=x    ,x=x    ,1=x    ,0 210   (replacing x2 by  ,1)+x  

1+2x   = x+1+x   = x  + x   = x 23 ,
  ,2  = x+2+x 2   = x  + x 2   = 1)+x (2 x   = x 24  

x 2  = x5 , 2+2x  = 1)+x 2(  = x 2  = x 26 ,
  ,2+x  = x 2 +2 + x 2  = x 2  + x 2  = x 27  

.  1  = x 2+1+x  = x 2 +x  = x 28  Thus the powers of x  generate  ,F* and x  
is a primitive element of . F*  
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Let us summarize our construction . The elements of F  are  
  2x   ,2x2 , x2   ,2   ,1x2   ,1x   ,x   ,1   ,0   x   ,x , x   ,x   ,x   ,x   ,x   ,1   ,0    = F 765432      

The (x))g    ,3 ( 2mod  arithmetic tables , one for addition and the other for 
multiplication  are as follows : 
 
 
+3  

 
  0        1        x      x+1     2x+1     2     2x     2x+2    x+2   

 
    0     
1         
x         
x+1     
2x+1   
2 
   2x 
2x+2   
x+2 
 

 
  0        1        x      x+1     2x+1     2     2x     2x+2    x+2 
  1        2      x+1   x+2     2x+2     0    2x+1    2x        x    
  x       x+1    2x    2x+1        1     x+2    0         2     2x+2 
 x+1   x+2   2x+1 2x+2       2        x      1         0        2x 
2x+1 2x+2    1       2         x+2     2x    x+1      x         0 
  2        0       x+2    x           2x       1    2x+2  2x+1    x+1  
2x     2x+1     0       1         x+1   2x+2   x         x+2    2  
2x+2   2x       2       0           x      2x+1   x+2    x+1    1 
  x+2    x      2x+2  2x          0        x+1   2        1      2x+1 

 
 

*,+ 33  
 
 
  0        1        x        x+1   2x+1     2        2x      2x+2    x+2 

 
   0      
1         
x         
x+1   
2x+1  
2 
  2x 
2x+2  
x+2 
 

 
  0        0        0          0        0         0         0          0         0  
  0        1        x        x+1   2x+1     2        2x      2x+2    x+2 
  0        x      x+1    2x+1      2        2x     2x+2     x+2      1 
  0      x+1  2x+1       2        2x       2x+2   x+2      1         x 
  0    2x+1     2          2x     2x+2      x+2   1          x       x+1 
  0        2       2x     2x+2      x+2     1         x         x+1  2x+1 
  0        2x   2x+2     x+2      1          x        x+1   2x+1     2 
  0    2x+2    x+2       1         x          x+1  2x+1     2        2x 
  0      x+2     1           x        x+1     2x+1   2         2x    2x+2 
 

 
From the above presentation the quadratic residue set in GF(9)  is  

    .     2+2x   ,2   ,1+x   ,1   ,0    =   x    ,x    ,x    ,x    ,0    = QR 6420  
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:3.3Example  We construct . GF(11)=F  Since 11 is a prime number 
we take    10   ,9   ,8   ,7   ,6   ,5   ,4   ,3   ,2   ,1   ,0   = Z = F 11  under mod 11 
arithmetic . The mod 11 addition and multiplication tables are as 
follows: 
 

 
Note that 2 is a primitive element in . GF(11) Thus 

                             9   ,5   ,4   ,3   ,1   ,0   =   2   ,2   ,2   ,2   ,2   ,0   = QR 86420 . 
 

:3.4Example To construct  ,GF(19)=F  since 19 is a prime number 
then we take 

   18   ,17   ,16   ,15   ,14   ,13   ,12   ,11   ,10   ,9   ,8   ,7   ,6   ,5   ,4   ,3   ,2   ,1   ,0   = Z = F 19

under mod 19 arithmetic . The addition and multiplication tables may be 
constructed on the same principles as in Example 3.2.3 . Note that 3 is a 
primitive element mod 19 and the set of quadratic residues in F  is

  .    17   ,16   ,11   ,9   ,7   ,6   ,5   ,4   ,1   = QR  
 

:3.5Example Suppose that the problem is to determine the quadratic 
residues and quadratic nonresidues in the Galois field . GF(25)   
   i)  First we determine a quadratic  primitive irreducible polynomial over 

. Z 5  To this end we take the factor 1+x12  in the factorization
 ,1)+x1)(-x(=1-x 121224  and factorize it into irreducible factors over Z5 ( 

remember that the arithmetic on the coefficients is done mod 5) :     
.  1)+x-x( 1) +x ( = 1 +) x ( = 1+x 48433412  

 
+11  

 
0   1   2   3   4   5   6   7   8   9   10  *11  0   1   2   3   4   5   6   7   8   9   10 

 
   0 
   1 
   2 
   3  
   4 
   5 
   6 
   7 
   8 
   9 
  10 

 
0   1   2   3   4   5   6   7   8   9   10 
1   2   3   4   5   6   7   8   9   10   0 
2   3   4   5   6   7   8   9   10   0   1 
3   4   5   6   7   8   9   10   0   1   2 
4   5   6   7   8   9   10   0   1   2   3 
5   6   7   8   9   10   0   1   2   3   4 
6   7   8   9   10   0   1   2   3   4   5 
7   8   9   10   0   1   2   3   4   5   6 
8   9   10   0   1   2   3   4   5   6   7 
9   10   0   1   2   3   4   5   6   7   8 
10   0   1   2   3   4   5   6   7   8   9 

    0 
   1 
   2 
   3 
   4 
   5 
   6 
   7 
   8 
   9 
  10 

0   0   0   0   0   0   0   0   0   0    0 
0   1   2   3   4   5   6   7   8   9   10 
0   2   4   6   8   10 1   3   5   7    9 
0   3   6   9   1   4   7   10 2   5    8 
0   4   8   1   5   9   2   6   10 3    7 
0   5  10  4   9   3   8   2   7   1    6 
0   6   1   7   2   8   3   9   4   10  5 
0   7   3  10  6   2   9   5   1   8    4 
0   8   5   2  10  7   4   1   9   6    3 
0   9   7   5   3   1  10  8   6   4    2 
0  10  9   8   7   6   5   4   3   2    1 
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        Now                                    
3)+x2)(+x(=1+x 224 , 

4)+x 2+x ( 4) +x 2 - x ( = ) x 2 ( - )4 +x ( = 1+ x -x 2424222448  
2)+x -x( 2)+x +x( = x -)2+x( = 4 +x 2-x 2222224  

3)+2x-x( 3)+x 2+x( = )x (2-)3+x( = 4 +x 2+x 2222224  
         Thus 

.  3)+x 2-x( 3)+x 2+x( 2)+x -x( 2)+x +x( 3)+x( 2)+x( = 1+x 22222212  
 ii) Now 3)+x2)(+x(=1+x 224  divides .  1-x8 Hence neither 2+x=(x)g 2

1

nor 3+x=(x)g 2
2  are primitive irreducible polynomials over . Z 5  However, 

each of 3+2x+x=(x)g      ,2+x-x=(x)g      ,2+x+x=(x)g 2
5

2
4

2
3  or

3+2x-x=(x)g 2
6  are primitive irreducible polynomials over . Z 5  Any of 

these may be used to develop GF(25) giving both a multiplicative and 
additive representation to the elements of . GF(25)  If either (x)g1  or (x)g2 is 
used we would obtain the additive representations of the elements of
GF(25)  under (x))g   ,5 ( imod  arithmetic,  ,2  1, =i but not the multiplicative 
representation .  
iii) Suppose we select 2+x+x=(x)g=g(x) 2

3  to develop . GF(25)  Then 
under 2)+x +x   ,5 ( 2mod  arithmetic the set  

 
             Zb    ,a     :   b +x a    = 5  

is a Galois field of order 25 . Below we tabulate the elements of F  in their 
multiplicative and additive form : 
 
0     1    x     2x       3x        4x         5x         6x         7x        8x         9x       10x      
0    1     x  3x4   2x4    2x3    4x4       2         x2      1x3     4x3    4x       
 

11x    12x  13x  14x    15x      16x     17x   18x    19x   20x     21x      22x         23x             
3x3  4   x4  2x   3x    3x2 1x    3     x3   4x2  1x2  1x4    2x2      

 
iv)  From the table in (iii): the quadratic residues in GF(25)  is the set 

  .    1+x 4   ,4+x 2   ,3   ,3+x 2   ,2+x   ,4   ,4+x   ,1+x 3   ,2   ,2+x 3   ,3+x 4   ,1   ,0   = QR
The quadratic nonresidues in GF(25)  is the set 
  .    2+x 2     ,1+x 2     ,x 3     ,1+x    ,3+x     ,x 4     ,3+x 3     ,4+x 3    ,x 2     ,4+x 4     ,2+x 4     ,x    



On Some Methods of Constructing Hadamard Matrices 

100 
 

:Remarks    
a)  It is interesting to note that in Example 3.5,  2 and 3 are quadratic   
     nonresidues in GF(5)=Z 5  but are quadratic residues in . GF(25)   

b)  One can establish that there are exactly 
2

p)-p( 2

monic irreducible  

      quadratic polynomials over p ,Z p  a prime . For the case  ,5=p there  

      are thus 10=
2

5)-(25  monic irreducible quadratic  polynomials over  

     . Z 5  Six of these are given  in (ii) of Example 3.5 . The remaining four  
      of these monic irreducible quadratic polynomials appear as factors of 
     1-x12 :  

1)+x1)(-x(=1-x 6612     
.  4)+x 2-x( 4)+x 2+x( 1)+x-x( 1)+x+x( 3)+(x 2)+(x 1)+1)(x-(x = 2222  

Of course none of these four monic irreducible quadratic polynomials are 
primitive since each divides .  1-x12  
 

4.      Paley's Constructions 
 
Firstly, we have shown that for the even prime 2=p and any positive 
integer k a Hadamard matrix of order 2=n k  may be constructed by 

repeatedly taking the Kronecker product of 








1-1

11
  = H 2 with itself k

times . This raises the question of  the construction of Hadamard matrices 
whose order n  is related to an odd prime power.  In this connection Paley 
(1933) offered the following two constructions : 
 
(P1)    a  Hadamard matrix of order 1+s=n  can be constructed where s  is 
a prime power , say p      ,p=s r  a prime and . 4) ( 3s mod  
(P2)    a  Hadamard matrix of order 1)+(s 2=n  can be constructed, where

p=s r is a power of a prime p and . 4) ( 1s mod  
       The purpose of this part is to develop and present the Paley 
constructions outlined in (P1) and (P2) . Both involve the use of Galois 
fields . GF(s) Unlike the Kronecker product construction which requires at 
least one pre-existing Hadamard matrix to implement it , the Paley 
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construction produces a Hadamard matrix once the order of the matrix is 
specified as in (P1) or (P2) . 
 
        The following notation and setting will be used in the formulation of 
the results below. Let GF(s)=F be a Galois field of order s where p=s r and
p is an odd prime number. Let {1,-1}=H  be the two element 

multiplicative subgroup of the multiplicative group of the nonzero real 
numbers . Recall that the set of nonzero elements of  ,F call it  ,F* is a cyclic 
group under multiplication . The following mapping , known as a

  ,character and some of its properties will be helpful in detailing the Paley 
constructions : H  F :  *  is the mapping defined by 







.   F in nonresidue quadratic a is a        ,1-          

   ,F in residue quadratic a is a       ,1
  = (a)

*

*

  

 
:.14Lemma  The character H F : *  is a group homomorphism 

between the two multiplicative groups . 
:Proof   Note that the product of two nonzero quadratic residues or the 

product of two quadratic nonresidues is a quadratic residue , whereas the 
product of a nonzero quadratic residue and a quadratic nonresidue is a 
quadratic nonresidue . From this it is  immediate that (b) (a) = b) (a  for 

all b   ,a in F* and the lemma is established. □ 
 

:.14Corollary In F there are precisely
2

1+s quadratic residues and
2

1-s

quadratic nonresidues . Moreover .  0 =(a)
Fa *




 

:Proof From Lemma 4.1 , the kernel of  consists of the quadratic 
residues in F* and the only other coset of  consists of the quadratic 
nonresidues . Since the cardinality of   ,1-s|=F|   ,F ** it follows that F* has

2
1-s quadratic residues and 

2
1-s quadratic nonresidues . Since the zero 

element 0 in F is also a quadratic residue the total number of quadratic 

residues in F is
2

1+s and the corollary is established .  □ 
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:.24Lemma  
 i)    When 4) ( 1p=s r mod then  -1   is a quadratic residue in . F       
ii)    When 4) ( 3p=s r mod then  -1   is a quadratic nonresidue in . F  

:Proof Let x  be a primitive element (generator) of the cyclic group . F*

Since the order of F*  is 1-s  we  conclude that . 1=x 1-s  Hence
. 0=1)+x1)(-x( /21)-(s/21)-(s  Since F  is a field and the order of x  is 1-s  we 

conclude that 0=1+x /21)-(s  or . -1=x /21)-(s When 4) ( 1s mod then 1+4k=s
for some integer . k Then -1= ) x(= x =x 2k2k/21)-(s  and -1 is a quadratic 
residue establishing (i) . When 4) ( 3s mod  then 3+4m=s  for some 
integer . m Then -1=x=x 1+2m/21)-(s  and x  is a quadratic nonresidue 

establishing (ii) . □ 
 

:.24Corollary         
 i)    When 4) ( 1p=s r mod then (a)=(-a)   for all a  in . F*         
ii)    When 4) ( 3p=s r mod then (a)-=(-a)  for all a  in . F*      

:Proof Using Lemma 4.1 , for any Fa we have
(a).(-1)=((-1)(a))=(-a)    When 1=(-1)    ,4) ( 1s mod  and when

-1=(-1)    ,4) ( 3s mod  by Lemma  4.2 and the definition of .  From this 

both (i) and (ii) follow completing the proof .                                □ 
 
         In the following it will be useful to extend the definition of the 
character  to all of F by placing  ,0=(0) where the first 0 is the zero 
element of F and the second zero  is the real number 0 . With this extended 
definition we have  as a map from F to the set{-1,0,1} . The following 
lemma will be most helpful in establishing our first main result . 
 

:.34Lemma -1=c)+(b(b)
Fb




, if 0c  . 

:Proof  .    0=c)+(0  (0)  Since F is a field , when b    ,0b -1 exists . 
Let . c)+(bb=z -1 Then 0z  when  ,-cb  and z is the unique element in F
such that . c+b=bz Let  .   -cb  ,Fb :    ) c+b (b =z    = K *-1  We note 
that   ,{1}-F=K * where 1 is the unit element of . F Note that 1c)+(bb-1 
for any ,Fb * for otherwise b=c+b  from which  ,0=c a contradiction . 
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Hence . {1}-F  K * Next , let . {1}-F   x *  Define . )1-c(x=b -1 Then  ,0b 
for otherwise 0=c  or  ,1=x neither of which is the case . Moreover 

x=1)-(x+1=c] +)1-x ( 1)[c-x (c=c)+(bb -1-1-1 from which we conclude  
that . Kx Hence . K{1}-F*  In all . {1}-F=K * Now , 

  ,z) (b (b)=  ) c+b ( (b) = ) c+b ((b) 
-{1}FzFbFb **

 


since

. {1}-F=K *  By Lemma 4.1,  (z) (b) = z) (b  and thus    
  ,-1=1-0= (1)-(z)= (z)=  (z)  ](b) [=  ) c+b ( (b)

Fz-{1}FzIN

2

-{1}FzFb ***

 


using Corollary 4.1 .                                                                  □ 
 

     A real matrix M of order n  is called  symmetricskew  if and only if
. M-=M  It is clear that any skew symmetric matrix has each of its 

diagonal entries equal to zero. Recall that a  Hadamard matrix H of order
n  is called a Hadamard skew  matrix if and only if  ,S+I=H n where S  
is a skew symmetric matrix . Clearly to obtain a skew Hadamard matrix 
we need a skew symmetric matrix whose off diagonal entries are +1 or  -1.  
     We now introduce a matrixQ of order p   ,p=s r an odd prime , and 
study its properties in the lemmas below . This matrixQ will play a crucial 
role in both Paley constructions. The definition of Q is based on the Galois 
field F of order p  ,p=s r an odd prime and uses the character  defined on

: F  let       ,. . .    ,    ,    ,   = F 1-s21  _ be  a listing of the s elements of F
with . 0= _ Define 

(3.1)     )-(=q , )q(=Q ijijsxsij   
 

:.44Lemma The matrix Q  is a matrix with entries in the set {-1,0,1} .  
When 4) ( 1 p=s r mod  then Q  is a symmetric matrix . When 

4) ( 3 p=s r mod  then Q  is a skew symmetric matrix . 
:Proof The first statement of the lemma follows from the definition of 

the character  .  
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Moreover











  ,4) ( 1p  when ,)-(  

  ,4) ( 3p  when ,)-(-  
 = ))-((-1)( = )-( = q

r
ji

r
ji

jiijij
mod

mod




   

                                                        










  ,4) ( 1p  when ,q       

  ,4) ( 3p  when ,q-  
 =

r
ji

r
ji

mod

mod
 

using Corollary 4.2 . This completes the proof .                          □ 
 
      The following notation will be useful and will be employed throughout : 

J mxn will denote a matrix of order mxn each of whose entries is +1 . We 
simply write J when its dimension is apparent from the context. 

:.54Lemma Q  satisfies the following : 
 i)  ,J -I s=QQ s  
ii)  ,0 =Q J = J Q  

:Proof         
 i)    Let  ,)b(=B = QQ ij then 
      =bij inner product of the i-th row of Q with the j-th row of Q  
         1- s=)-( )-(qq = jkik

k
jkik

k

 =     if j  ,=i and equals  -1      

       if ji  using Lemma 4.3 and taking  ik -=b and 0-=c ji  in    
       that lemma . This establishes (i). 
ii)  0=QJ follows from 0=)-( ji

j
 using Corollary 4.1 .             □ 

        We now use the matrix Q defined in (3.1) , to define the following 
matrix which is of major importance in the Paley constructions : 

(3.2)       

Q J

J- 0
=S

sx1

1xs

1)1)x(s+(s+










 

:.64Lemma  Let p   ,p=s r an odd prime , with . 4) ( 3p mod Then the 
matrix S defined in (3.2) has the properties : 
 i)    ,-S=S  namely S is skew symmetric ,               
 ii)  .  I s= SS 1s+  

:Proof  
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 i)    This follows from Lemma 4.4 , since Q  is skew symmetric when
. 4) ( 3p mod   

 

ii)    
 

using Lemma 4.5 (i). This completes the proof .                           □ 
 
      We are now ready to give the first Paley construction  (the construction 
outlined in statement (P1)) . 
 

:.14Theorem  [The First Paley construction ; Paley (1933)] 
      Let p   ,p=s r an odd prime , with . 4) ( 3p mod  Then the matrix

 ,S+I=H 1s+1s+  where S  is defined as in (3.2) is a skew Hadamard matrix 
of order . 1+s  

:Proof
 ,I1)+(s = I s+S-S+I = S S+S+S+I = )S+(I S)+(I = HH 1s+1s+  using  

Lemma 4.6 . Hence H  is a skew Hadamard matrix of order . 1+s  This 

completes the proof .  □ 
 
        We illustrate Theorem 4.1 by constructing a Hadamard matrix of order 
28 . This presented in the following example . 
 

:.14Example To make the presentation self contained we recall some 
definitions from the second part of this paper . In addition we will require 
the Remainder Theorem [Theorem 3.2] and two other theorems quoted 
below ; the proofs of the latter two theorems may be found in any standard 
book on abstract algebra which discusses Galois fields, for example, 
Herstein (1996) . 
Throughout p will denote a prime, 1n  will be an integer and let .  p=s n   
A polynomial f(x) in the polynomial ring [x]Z p will be called reducibleiff  

(x)g  .  (x)g=f(x) 21  for some [x]Zg pi  with degree <   gi  degree f for
.  2  ,1=i Otherwise f is called e.irreducibl Moreover, f(x)  is called monic

iff the coefficient of its highest degree term is 1 . An irreducible polynomial
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f(x) in [x]Z p  is called primitive  iff f(x)divides the polynomial 1-xm for
1-s=m but does not divide 1-xm for  any m such that .   1- s< m  1  

The importance of irreducible polynomials stems from the following : 
        (GF1)  let g(x) in [x]Z p be any monic irreducible polynomial of degree 
                     ,n   
        (GF2)   let  [x]   ,Z f(x)       :     f(x)       =F p degree  .       1-n  f(x)  
Then  the  underlying set F under g(x))    ,p  (mod  arithmetic is a Galois 
field of order .   s We write GF(s)  as a shorthand for the Galois field of 
order s and it denotes the  pair g(x)))    ,p  (      ,F ( mod  where g(x)  is 
defined in (GF1) and F in (GF2).  
       Let .   {0}-F=F* We have mentioned in the second part that F* is a 
cyclic group under the multiplication in F . The importance of monic 
irreducible primitive polynomials is due to the following : 
(GF4)   if  the monic irreducible polynomial g(x)  in (GF1) is also primitive 
then the cyclic group F* is generated by the polynomial x=q(x)  in F under

g(x))    ,p  ( mod  arithmetic . In fact F* has 1)-(s  generators, where   is 
the Euler - function, and   .      2- s i  0      :     x     =F i*  Thus F x *t is 
also a generator of F*  iff   
                      1- s t   and t is relatively prime to 1-s . 
    The above discussion raises two questions :  
                      1Question :   How does one find monic irreducible polynomials  
                                               g(x)  in [x]Z p of degree n ?                       
                     2Question :   How does one find monic irreducible primitive 
                                               polynomials in [x]Z p of degree n ? 
Let us consider the special polynomial .   x-x =(x)Q s

s  An answer to both 
questions can be given in terms of factorizing (x)Qs  in [x]Z p . The answer 
is not too satisfactory, as we shall see, because often (x)Qs is very difficult 
to factorize .  

:ATheorem (i)   Let g(x) be any monic irreducible polynomial of degree 
dividing .  n Then g(x)  divides (x)Qs . 
(ii)   The polynomial (x)Qs  equals the product of all monic irreducible 
polynomials whose degrees divide . n  
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(iii)   The number of monic irreducible polynomials of degree n is equal to 

n
1)]-(s[  where   is the Euler -  function .     

        The next result reduces the labour involved in checking that an 
irreducible polynomial of degree n is primitive in certain cases . 

:BTheorem  Suppose that .   4) ( 3p mod Let g(x)  be a monic 
irreducible polynomial of degree . n Consider the Galois field

.   g(x))    ,p  (     ,F ( =GF(s) mod Then,   
if -1=x 1)/2-(s  under g(x))    ,p  ( mod  arithmetic then g(x)  is primitive .    
       We are now ready to construct H 28  using the first Paley method . 
We give the construction procedure in steps . In this construction we 
need to develop )3GF( 3 so that 3=p=n  and 27=s . 

1Step .  Find a cubic monic primitive irreducible polynomial in
[x]Z 3 . At first glance this step seems easy . According to Theorem A 

we need to factorize  x-x=(x)Q 27
3  into irreducibles of degree 

dividing 3 . The polynomial we seek is among the factors . Now
1)+x(  1)-x( x  = x-x 131327 and by the Remainder Theorem 1-x13 and

1+x13  have 1-x  and 1+x  as factors respectively . Upon division by 
1-x  and 1+x  we are left with two lengthy 12 degree polynomials 

which are indeed very difficult to factorize . So we abandon this 
approach and try a different strategy . 
 
This strategy works well when n  is small and prime . We now present 
the strategy as a sequence of problems and solutions .   
      A cubic monic polynomial in [x]Z 3 has the form : x + x c + x b + a 32 with

c     ,b     ,a  in Z3 . Hence there are precisely 27 such polynomials . 
 1Problem . Find all the cubic monic reducible polynomials in [x]Z 3 . 
 Solution .       Using the Remainder Theorem it may be verified that the list  
                        of 19 monic cubic polynomials are all reducible : 
 (i)  ,xx;+x+xx;+x-xx;-x+xx;-x-x;x-x;x+xx;+xx;-x 323232323232333        
(ii)       ,1-x-x+x1;-x+x-x1;+x-x-x1;+x+x1;+x+x1;-x 2323233233    
(iii)      .1-x+x1;+x+x+x1;-x-x1;+x 323233  
In fact q(x)  is in (i) iff 0=q(0)  ; q(x)is in (ii) iff 0=q(1) and q(x)is in (iii) iff  

0=q(2) . 
2Problem .   Find all the cubic monic irreducible polynomials in [x]Z 3 . 
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                        Solution . The purpose of Problem 1 was to eliminate the 19  
                         Monic reducible polynomials of the possible 27 monic cubic  
                         polynomials . The remaining 8 must be monic irreducible  
                         and hence any of them is suitable to develop )3GF( 3 . We  
                         list the 8 in 2 groups : 
                  (PI)   ,1+x+x-x1;+x-x+x2;-x-x2;-x-x 2323233  
               (NPI)   .1-x+x1;-x+x+x1;-x-x1;-x-x-x 2323323  
    Again the Remainder Theorem may be used to verify that the 8 
polynomials listed in (PI) and (NPI) are irreducible .  

3Problem . [This problem addresses Step 1] . Find a monic cubic                        
primitive irreducible polynomial in [x]Z 3 . 
Solution .        The polynomial we seek is among the 8 polynomials listed 
                        in the solution to Problem 2 . By Theorem A (iii) there are 

                      4=
3

12=
3

(26)  such cubic primitive irreducibles . 

There is no quick method of identifying which 4 amongst the 8 are 
primitive . We resort to a well known mathematical technique : trial and 
error . We simply pick one of the 8 listed polynomials and apply Theorem 
B  to it and continue on until we are succesful . In this way we find that the 
4 polynomials listed in the group (PI) are primitive and the remaining 4 are 
not. As an illustration let us verify that the irreducible polynomial

2-x-x=g(x) 3 is primitive. Consider )3GF( 3
 under g(x))    ,(3 mod

arithmetic . Then under this arithmetic we have the relation reduction  
                                        (RR) :   2+x=x3    
Now under g(x))    ,(3 mod arithmetic we have  
     )2+(x =  )x( = x 44312 using (RR) 
                       ,1+2x+x2+x= 34 expanding 
                       1+2x+2)+2(x+2)+x(x= using (RR) 
                       2+x= 2  
Hence 2x+2+x  = 2x+x  = ) 2+x ( x  = x 3213  using (RR) .  
                                      ,1-=2=  
That is, -1=x13 and by Theorem B, g(x)  is primitive . 
      The next problem is now unnecessary but it illustrates Theorem A . 

4Problem .  Factorize x-x=(x)Q 27
s  to illustrate Theorem A . 

Solution .        In this case 3=n . Thus the only irreducibles of degree 
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                       Dividing 3=n  are of degree 1 or 3 . Those of degree 1 are   
                       Clearly   ,1-x       ,x  1+x  and those of degree 3 are  listed in  
                       (PI) and (NPI) . Hence 













     1)-x+x(  1)-x+x+x(  1)-x-x(  1)-x-x-x(  1)-(x     

     1)+x+x-x(  1)+x-x+x(  2)-x-x(  2)-x-x(  1)+(x     
=1-x

2323323

2323233

26

Indeed the factors in the first line multiply out to 1+x13 and those in the 
second line multiply out to 1-x13  

2Step .  Select a monic cubic primitive irreducible polynomial and use it   
                  to develop )3GF( 3 . Write the elements of F in both the additive  
                  form and as powers of its cyclic generator x . 
This is the second crucial step in the construction process . We choose the 
cubic primitive irreducible polynomial 2-x-x=g(x) 3 . The underlying set
F of )3GF( 3 is then       ,   Z    c     ,b     ,a  :  c + x b  +x a    =F 3

2  and
F under ) 2-x-x=g(x)     ,3 ( 3mod  arithmetic  is a Galois field of order 27.  
To facilitate computation under g(x))   ,(3mod  arithmetic we will, as before, 
use the reduction relation : 
                               (RR) :     2+x=x3  . 
Since g(x) is primitive the cyclic group {0}-F=F* has x  as a generator . 
Hence   .        25  i  0   :x      =F i*  For convenience, we rename the 27 
elements of  F  as follows: 

0=1- (zero element of 1=x=        ,)  F _
_ (unit element of    ,)  F and in 

general    ,x= i
i  .   25  i  0  Before we develop the additive (polynomial) 

and power form for each element of   ,F a very crucial step for the Paley 
construction, let us demonstrate a particular calculation by finding the 
additive form of .   F x *5 We use (RR) as often as necessary. Now 

2+x+x2=x2+2+x=x2+x=2)+(xx=)x(x=x 22232325 . Thus the 
additive form of x5  is 2+x+x2 2 . Using this method we can develop the 
additive form of each .   xi Since g(x) is primitive, we are guaranteed that we 
can do 26 such calculations in succession and thereby exhaust F* obtaining 
the additive form of each element of .   F In the table below we record the 
27 elements of F in their additive and power forms and identify each with 
the appropriate symbol  i . 
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3Step .  Construct the Paley matrix )q(=Q ij of order 27 defined in (3.1) 

of part three . 
Recall that the entries qij are defined as follows : 

 
The Paley matrixQ will be presented in partitioned form ]  Q | Q  [=Q 21 , 
where Q1 is of order 27x15  and Q2  is of order 27x12  at the end of this 
example . The vertical and horizontal margins will be labelled by the 
elements  i  of .  F Crucial to developing the entries of Q  is table (T) of 
Step 2 . We illustrate how table (T) helps in developingQ by solving the 
next problem . 
         5Problem .   (i)    Compute the entries q 22  ,4 and q 8  ,4 ofQ . 
                                  (ii)   Explain why q- =q jij i for all .j     ,i           
         Solution . 
(i) Now ,x=x+x=2)+x+x(2-2)+(2x=x-x=- 1022522

522  using table  
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(T) twice . Since x10 is a quadratic residue in F , 1 =q 22  ,5 . 

Similarly, ,x=2+2x-x=2x)+x(-2)+x(2=x-x=- 1122248
48  using table 

(T) twice . Since x11 is a quadratic  nonresidue in F , -1=q4,8 . 

(ii) Now )--(=- jiij  . Also -1=x13 from table (T) . Suppose that

x=- k
ij  . Then .x=x.x=)--(=- 13+kk13

ijji  Thus 13+k is even iff
k  is odd and 13+k  is odd  iff k  is even . Hence q-=q jiij . 

4Step . We are now ready to construct H 28 the Hadamard matrix of order 
28 . 
      First we form the matrix S of order 28 defined in (3.2) of part three : 

                                       










QJ

J-0
=S

27x1

1x27
 , 

whereQ is the Paley matrix developed in Step 3 and J 27x1 is a vector each of 
whose entries is +1 . Finally set 
                                                  S+I=H 2828 , 
where I 28 is the identity matrix of order 28 . Due to Theorem 3.3.1, we 
know that H 28  is a Hadamard matrix of order 28 . From Problem 5 (ii), we 
know that Q  is skew symmetric and hence so is S . Thus by definition, the 
matrix H 28 constructed here is  a skew Hadamard matrix . It is interesting to 
note that each diagonal entry of H 28  is  +1 . 
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        We now develop the second Paley construction (outlined in statement 
(P2)) . This construction is based on the concept of a conference matrix . A
conference  ,matrix hereafter called a C-matrix , is a matrix M of order n
such that the diagonal entries of M are zero , the off-diagonal entries are +1 
or  -1 and . I1)-(n=MM n Clearly , if M is a C-matrix then I1)-(n=MM n
so that every pair of rows (or columns) of M are orthogonal . C-matrices 
were first used by Belevitch (1950) in studying the theoretical aspects of 
electrical networks . Later they were studied in their own right by Goethals 
and Seidel (1967) who in fact referred to these matrices as conference 
matrices . Since the second Paley construction depends on the existence of 
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C-matrices we state two results below without proof which shed some light 
on the question of their existence. 
        Let m be a positive integer and suppose ) p  . . .  p  p  p ( n = m k321

2 where
k)i(1 pi   are distinct prime numbers . Then the number 

p   . . .  p  p  p = t k321  is called the square free part of .m The following two - 
square theorem is a well known number theoretic result and includes the 
celebrated two square Fermat theorem as a special case . We refer for the proof 
to Hardy and Wright (1954) . 
 

:.24Theorem  [Two Square Theorem] 
      A positive integer  ,y+x=m 22 for some integers x and y if and only if 
the square free part of m consists of prime numbers each of which is 
congruent to . 4) ( 1 mod  The connection of the two square theorem to C-
matrices occurs via the next theorem. For a proof of this next theorem see 
Raghavarao (1971) and Wallis et al (1972) . 
 

:.34Theorem  A necessary condition for the existence of a square 
rational matrix M (i.e. M has rational number entries) of order 4) ( 2n mod
satisfying Im=MM n  for some positive integer m  is that b+a=m 22 for 
some integers a and . b  
 
      A clear inference from Theorem 4.2 and 4.3 is the following : 
 

:.34Corollary A necessary condition that there exist a C-matrix of order 
4) ( 2n mod is that the square free part of 1-n consists of prime numbers 

each of which is congruent to . 4) ( 1 mod  
 
      From Corollary 4.3 we conclude that there are many values of

4) ( 2n mod for which a C-matrix of order n does not exist . For examples 
C-matrices of orders .  etc  ,. . .  ,78  ,58  ,34  ,22 = n do not exist . For a listing 
of orders <1000 for which C-matrices exist and those orders excluded by 
the above results see Wallis et al (1972). 
 
    For certain 4) ( 2n mod a C-matrix of this order n  always exist . Indeed 
the developments earlier in this part guarantees this . To ferret out this 
pleasant situation we adjust the definition of S given in (3.2) . 
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    Consider the matrix T of order 1+s defined as follows : 
(3.3)       

Q J

J 0
=T=T

sx1

1xs

1)1)x(s+(s+

1s+ 









 

 
where the matrix Q is defined in (3.1) . 
 

:.74Lemma Suppose that the order p   ,p=s r an odd prime , of the 
Galois field F satisfies . 4) ( 1s mod Let T be the matrix of order 1+s
defined in (3.3).  ThenT is a symmetric C-matrix . 

:Proof Since Q   ,4) ( 1s mod is symmetric by Lemma 4.4 and hence so 
is . T  Further , as in the proof of Lemma 4.6 , 

  ,I   s= 
J+QQ 0

0 s
=TT 1s+

sxs














 using Lemma 4.5 (i) . Hence T is a C-

matrix , completing the proof .                                                      □ 
 
    We remark that the matrix S of order 1+s defined in (3.2) is also a C-
matrix but it is not symmetric . The second Paley construction requires a 
symmetric C-matrix and this  necessitates the adjustment of S toT as done 
in (3.3) . 
 

:2.4Example  We  construct  the  symmetric  C-matrix .T 6  First 
  4  ,3  ,2  ,1  ,0  = GF(5)  under .   *        ,+ 55  The quadratic residues of GF(5)  

is the set   4  ,1  ,0  = QR and the quadratic nonresidues is the set .   3    ,2  
Thus 

   

























0+--+

+0+--

-+0+-

--+0+

+--+0

=Q

5x5

 and    



























0+--++

+0+--+

-+0+-+

--+0++

+--+0+

+++++0

   =   T

6x6

6 . 

It may be verified that .    I 5 = T  T = T  T 66666   
 



On Some Methods of Constructing Hadamard Matrices 

116 
 

:.34Example We construct the symmetric  C-matrix .T 10  First, as in 
Example 3.2,  we consider 

      ,2x=x   ,2=x   ,1+2x=x   ,1+x=x   ,x=x   ,1=x   ,0    = GF(9) 54321_  
    2+x=x   ,2+2x=x 76  under ) 2+2x+x     ,3 (  2mod arithmetic . The set   
   of quadratic residues ofGF(9)  is    2+x 2   ,2   ,1+x   ,1   ,0   = QR  and the   
   set of quadratic nonresidues is .   2+x   ,x 2   ,1+x 2   ,x  Thus the matrix  
  )q(=Q ij of order 9 defined in (3.1) is displayed below (the horizontal and    
   vertical margins are indexed by the elements of :  ) GF(9)  

 
Then the symmetric C-matrix T 10 defined in (3.3) is obtained fromQ by 
bordering it as  follows : 








 

Q 1

1 0
   =  T

10x10

10 . 

  :.44Theorem     [Second Paley Construction ; Paley (1933)] 
 i)    If a symmetric C-matrix M of order n exists then the matrix 

       I  
1-1-

1-1
  +   M 

1-1

11
  = H n
















                                  (3.4)     

      where is the Kronecker product , is a symmetric Hadamard matrix of order
. 2n   

ii)  If T is the symmetric C-matrix of order 1+s defined in (3.3) ,where  
    4) ( 1 p=s r mod and p is an odd prime , then 

                              I  
1-1-

1-1
  +  T  

1-1

11
  = H n
















  

    is a symmetric Hadamard matrix of order . 2+2s  
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:Proof  (ii) is immediate from (i) and Lemma 4.7 . Hence we prove (i) . 
Note that H defined in (3.4) can be rewriten as    

    
















I)+(M- I-M

   

I-M I+M

   =  H .  Now by direct multiplication , 

I n 2   =  

I)+M(- I-M

   

I-M I+M

      

I)+(M- I-M

   

I-M I+M

   =  HH




































 , 

performing the block multiplication and using M=M  and .  I 1)-(n = MM n  

□ 
 
     The Paley constructions given in Theorems 4.1 and 4.4 form the 
backbone of a number of further construction results on Hadamard matrices 
based on Galois fields which have been developed since Paley's initial 
effort in 1933 described here . At this point we simply summarize some of 
these additional construction results below . We emphasize that these are 
actual constructions when the stated conditions are met , as are the Paley 
theorems , and not merely existence statements . For detailed proofs of 
these results see Hall (1967) . As in first part , the constructions below are 
of the recursive type , and use the Kronecker product when appropriate . 
 

:.54Theorem [Williamson (1944) ; Generalization of Paley's second Construction] 
If p   ,4) ( 1 p=s r mod a prime and if a Hadamard matrix H of order 1>n
is given then a Hadamard matrix of order 1)+n(s  can be constructed . 
 

:.64Theorem  
 i)    Let .  k   . . .  k  k  2 = n m21

t Suppose that either 4) ( 01+  p = k r
ii

i mod  or 
        ,1)+p ( 2 = k r

ii
i 4) ( 1 pr

i
i mod  for each .i Then a symmetric Hadamard  

        matrix of order n  can be constructed . 
ii)   Let a skew Hadamard matrix of order n  be given . Suppose that 
       ,4) ( 3 p=s r mod where p  is a prime . Then a skew Hadamard matrix   
      of order 1)+n(s can be constructed . 
iii)  Let k   . . .  k  k  2=n m21

t where each 4) ( 01+  p=k r
ii

i mod  with pi  
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       prime . Then a skew Hadamard matrix of order n  can be constructed . 
iv)  Let a skew Hadamard matrix of order n  be given . Then a Hadamard  
      matrix of order 1)-n(n can be constructed . 
v)   Let a skew Hadamard matrix of order n  and a symmetric Hadamard  
      matrix of order 4+n=m be given. Then a Hadamard matrix of order 
      3)+n(n  can be constructed. 
vi)  Let two Hadamard matrices of orders 1>n1  and 1>n2  be given . Let  
      p be a prime such that . 4) ( 1 pr mod Then a Hadamard matrix of order  
      p 1)+p ( n n rr

21 can be constructed . 
vii)  Let two Hadamard matrices of orders 1>n1  and 1>n2  be given .  
       Suppose that n  is a positive number such that 1+p=n r

1
1 for some 

       prime p1 and 1+p=4+n r
2

2  for some prime . p2 Then a Hadamard  
       matrix of order 3)+(n n n n 21  can be  constructed . 
 
 We now give some examples to illustrate the two Paley constructions . 
 

:4.4Example To construct a Hadamard matrix of order 8 , we observe 
that 8=7+1 . The quadratic residues of    6  ,5  ,4  ,3  ,2  ,1  ,0   = GF(7)  is the 
set    4  ,2  ,1  ,0   = QR  and the quadratic nonresidues is the set .   6  ,5  ,3  
Using (3.1) , and (3.2) we construct the matrix Q and the matrix S  































0++-+--

-0++-+-

--0++-+

+--0++-

-+--0++

+-+--0+

++-+--0

=Q

7x7

,   


















Q J

   

J- 0

=S

7x77x1

1x7

8x8

. 

Finally , by Theorem 4.1 , S+I=H 88 : 
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

































+++-+--+

-+++-+-+

--+++-++

+--+++-+

-+--++++

+-+--+++

++-+--++

-------+

=H

8x8

8  . 

 
:5.4Example To construct a Hadamard matrix H 12  of order 12 , there 

are two ways . First we observe that 12=11+1 . The quadratic residues of 
   10  ,9  ,8  ,7  ,6  ,5  ,4  ,3  ,2  ,1  ,0   = GF(11)  is the set 

   9  ,5  ,4  ,3  ,1  ,0   = QR  and the quadratic nonresidues is the set
 .   10  ,8  ,7  ,6  ,2  Using (3.1) , and (3.2) , the matricesQ and S are 













































0+-+++---+-

-0+-+++---+

+-0+-+++---

-+-0+-+++--

--+-0+-+++-

---+-0+-+++

+---+-0+-++

++---+-0+-+

+++---+-0+-

-+++---+-0+

+-+++---+-0

  =  Q

11x11

, 

.

Q J

   

J- 0

=S

11x1111x1

1x11

12x12

















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Thus , by Theorem 4.1 , S+I=H 1212  is the skew Hadamard matrix 
displayed below: 
 

















































++-+++---+-+

-++-+++---++

+-++-+++---+

-+-++-+++--+

--+-++-+++-+

---+-++-++++

+---+-++-+++

++---+-++-++

+++---+-++-+

-+++---+-+++

+-+++---+-++

-----------+

  =  H

12x12

12 . 

 
    Now we construct H 12 by the second Paley construction . As 12=2(5+1) , 
where 5 is a prime and  ,4) ( 21+5 mod we can use Theorem 4.4 and 
Example 4.2 to construct .H 12 From Example 4.2, and Theorem 4.4 (ii) , 

 



























0+--++

+0+--+

-+0+-+

--+0++

+--+0+

+++++0

    =  T

6x6

6 ,   and  .  
)I+T(- I-T

I-T I+T
  =  H

6666

6666
12 










 

Hence H 12 is the symmetric Hadamard matrix displayed below : 
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















































--++---+--++

---++-+-+--+

+---+--+-+-+

++------+-++

-++---+--+-+

------+++++-

-+--++++--++

+-+--++++--+

-+-+-+-+++-+

--+-++--++++

+--+-++--+++

+++++-++++++

  =  H

12x12

12   . 

 
:6.4Example We construct a Hadamard matrix of order 20 by the 

Second Paley construction . As 20=2(9+1), where 9 is a power of a prime 
and  ,4) ( 21+9 mod we can use Theorem 4.4 and Example 4.3 to 
construct H 20  as follows (we display T 10  below, it is obtained from 
Example 4.3) :  
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and then by Theorem 4.4 (ii)  

                                 










)I+T(- I-T

I-T I+T
   =   H

10101010

10101010
20 . 

A full display of H 20  is below : 
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On Some Methods of Constructing Hadamard Matrices 
 

Abdurzak M. Leghwel  1   
 

Abstract 

    There are two methods , often used to produce examples of algebraic and 
combinatorial structures . One of these methods begins with at least one 
example of the desired structure at hand and then constructs further 
structures of a like kind . We call such a construction method .recursive
Another method (or methods) is to generate the desired structure simply 
after certain parameters regarding it have been specified . We shall call such 
a method of construction an initio ab method . 
        Hadamard matrices are algebraic structures in the sense that they form 
an important subclass of the class of matrices and hence must conform to all 
the algebraic  rules obeyed by matrices under the usual operations of 
addition and multiplication . On the other hand , Hadamard matrices are 
combinatorial structures as well since the entries +1 and -1 of which the 
matrix consists must follow certain patterns . Thus one expects that one 
should be able to utilize both type of constructions methods , recursive and 
ab initio , to construct Hadamard matrices . This is indeed the case and in 
this paper we review some of these construction methods for Hadamard 
matrices .                                                                                                                              
        In the second part we will introduce the concept of the Kronecker 
product and develop a recursive construction method for constructing 
Hadamard matrices based on it . Two important ab initio methods are 
discussed in the fourth part of this paper. These  methods are due to Paley 
(1933) and is based on Galois fields . Hence some Galois field basics are 
presented in the third part also.  

Keywords :  Hadamard Matrix, Kronecker product, Galois fields. 

1.   Introduction 
    A (-1,1) - matrix is a matrix whose only entries are the numbers  -1 or 1 . 
In this paper for the most part we will be interested in special (-1,1)-
matrices called Hadamard matrices . 
                                                 
1 Department of  Mathematics, Faculty of Science, Alasmarya Islamic University, Zliten – Libya . 
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   A matrix Hadamard  of order n  is an nxn  (-1,1)- matrix H,  satisfying 
,In=HH=HH n  where H  denotes  the  transpose of H and I n  is the 

identity matrix of order .n  If H is a Hadamard matrix, it follows from the 
definition that the set of row vectors of H,  as well as, the set of column 
vectors of H form mutually orthogonal sets . The reader is referred to [6]. 
 

2.    Construction of Hadamard Matrices Based on The                  
Kronecker Product 

     In this part we present the construction of Hadamard matrices employing 
the Kronecker product . This construction is recursive and requires at least 
one Hadamard matrix at hand in order to utilize it . It is , therefore , most 
useful when employed in conjunction with some of the other techniques for 
constructing Hadamard matrices to be developed later . We begin by 
introducing the concept of the Kronecker product of matrices and some of 
its basic properties . 

:Definition If )a(=A ij  is a pxq  matrix and )b(=B ij is a rxs  matrix , then 
their product Kronecker BA is the prxqs matrix given by 
 

:.12Example  If 








1-1

11
 = A

2x2

,   ,
35-

42
 = B

2x2







  

 

then          



























3-5 35-

4-2- 42

     

35- 35-

42 42

 = B  A

4x4

 

    The basic properties concerning how the Kronecker product relates to 
the matrix operations of addition , multiplication , scalar multiplication and 
transpose are given in the following theorem . 
 

:.12Theorem Let )a(=A ij  be a pxq  matrix and )b(=B ij  be a rxs
matrix. The Kronecker product B  A  is a prxqs  matrix with the following 
properties : 
  i)  B) (  A =  B  A) ( =  B)  (A    for any real number ,        
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 ii)     B)  A(  +  B)  A( =  B  )A+A( 2121  and 
         ,)B  (A  +  )B  (A  =  )B  + B(  A 2121   
iii)    ,B B   A A  =  )B  A( )B  A( 21212211   where the matrices Ai  and Bi

respectively are compatible for multiplication , 
iv)    ,B  A  =  )B  (A   
 v)   C)  (B  A  =  C  B)  (A   for any matrix  ,C   
vi)     ,B   A  =   )B  (A -1-1-1  if A-1  and B-1 exist . 

:Proof We will prove property (iv) , and we refer to a standard text in 
linear algebra for the rest . 
Since 

□ 
The relationship between the determinant of the Kronecker product of 
square matrices and the determinant of individual matrices is given in the 
following : 
 

:.22Theorem  For any two square matrices A of order m  and B of order 
.   ](B)[ ](A)[ = B)  (A       ,n mn detdetdet   

:Proof We prove the theorem for the case when A  has order . 2=m  
 

Then . 
aa

aa
=A

2221

1211

2x2










If all 0=aij  then the theorem is clearly true . Hence 

, without loss of generality suppose that . 0a11   Then 

. 
B a   B a

B a   B a
  =B  A

2221

1211











  Further , we may also assume without loss of 

generality that . 0(B) det  Then by [6, Theorem 3.1] , 
B)] a  )B a( B a  -  B a( [B)]  a( [ = B)  (A 12

-1
11212211 detdetdet   
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                  B)] a a a  -  B a(  [B)]  a(  [ = 12
-1
11212211 detdet  

                  B)] a a a  - B a( B a [  = 12
-1
11212211det  

                  )B ( )a a  - a a(  =]  B  )a a  - a a ( [   = 2n
12212211

2
12212211 detdet  

                  ] (B) [   ] (A) [  =]   B [  ][A  = 2n2n detdetdetdet and the theorem 

is proved for the case .    2=m                                                      □ 
 
   From the viewpoint of Hadamard matrices , the properties of the 
Kronecker product immediately imply the following result : 

 
:3.2Theorem If H 1  and H 2  are Hadamard matrices of orders n1  and n2  

respectively , then HH 21  is a Hadamard matrix of order .nn 21  
:Proof  Let H 1  and H 2  be a Hadamard matrices of orders n1  and n2  

respectively . Then 
HH  HH  =  )H  H(  )H  H(  =  )H  H(  )H  H( 221121212121    

                                .  I  n n  =  I  n  I n  = nn21n2n1 2121
          □ 

 
:.1.2Corollary Since there is a Hadamard matrix of order 2 , namely  

 ,
1-1

11
  = H 2 







  then there are Hadamard matrices of order 2n  for every 

positive integer . n     
:Proof  ,H  . . . .  H  H  = H 2222n  the Kronecker product of H 2  with 

itself extended over n  factors  gives the desired Hadamard matrix of order 
. 2n                                                                                                 □ 

 
:.22Corollary If H  is a Hadamard matrix of order  ,k for some 

positive integer k  then there is a Hadamard matrix of order k  2n  for every 
positive integer . n  

:Proof Let  ,H  H  = H 21 n  where H  is a Hadamard matrix of  order  ,k
and H 2n  is  the Hadamard matrix of order 2n  given in Corollary 2.1 . Then  

by Theorem 2.3, H 1  is a Hadamard matrix of order .   k  2n □ 
 

:.22Example Let H 2  be the normalized Hadamard matrix of order 2 . 
The matrix  
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





















+--+

--++

-+-+

++++

  = H  H  = H

4x4

224 is a Hadamard matrix of order 4 .  

By Theorem 2.3,  we conclude that H  H  H  = H 44464   is a Hadamard 
matrix of order 64 . 
 
    Theorem 2.3 will be more helpful when we apply it to Hadamard 
matrices constructed by other methods . We discuss some of these other 
methods below . 
 

3.    Some Galois Field Basics 
 
   Galois fields will play an important role in the construction of Hadamard 
matrices. Thus we take a closer look here at some Galois field basics 
including a recipe to construct such fields . For the proofs of results stated 
in this part of the paper we refer to Herstein (1996) . 
     Let F be a field and let n  be any positive integer . For Fx  we define 

x + . . . + x + x + x  = x n n ( terms in the sum ) . A field F  is said to have 
sticcharacteri   ,m  if there exists a smallest positive number m  such that

0=x m  for all . Fx  If no such positive integer m exists then F  is said to 
have characteristic zero . 
  Let Z  be the set of integers , and 2n   be a fixed integer . For any

 ,Zb  ,a  we define n) ( ba mod  if and only if n  divides . b) - (a One may 
check that   is an equivalence relation on . Z  For  ,Za we let [u] be the 
equivalence class determined by u  mod .n  Then 

   Zt :   a + n t   =[u]   is called the class residue mod n  determined by
.u  

   Let Z n  be the quotient set of Z  under  . Then one can verify that 
 1]  -[n  ,. . . [2] , [1] , [0] ,    = Z n (i.e. Z n consists of n  residue classes) . 

   In the set Z n  we introduce two operations, +n  called n  addition mod  
and *n  called n  tionmultiplica mod  as follows : 

      For Z[b] [a] , n  define b]+[a =[b] +[a] n  and . b] [a =[b] *[a] n

Then we can verify that ) *   ,+    ,Z ( nnn  is a commutative ring with n
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elements, called the integers of ring . n mod In general Z n  is not a field . 
To simplify the notation we will denote the element [c]  of Z n  by . c   
 

:13.Lemma  Let F  be a field . Then either F  has characteristic zero F (
is an infinite set and F contains an isomorphic copy of the rationals) or the 
characteristic of F  is a prime number F (    p  may be a finite or infinite set 
and contains an isomorphic copy of the ring . ) Z p  
 

:3.2Lemma  Z n  is a field if and only if n  is a prime number . 
 
   Let Z n  be the ring of integers mod .n  An expression of the form 
                                      x a + . . .  + x  a  + x a  + a  = f(x) k

k
2

21_  
in an indeterminate x  with Za ni  is called a polynomial over . Z n  The 
elements ai  are called the tscoefficien  of the polynomial . Further when

k    ,0ak   is called the degree of  ,f(x)  and when [1] ,=ak  the unit 
element of f(x)     ,Z n  is called monic a polynomial . 
  Let  f(x)  :    f(x)        =[x] Z n polynomial over    Z n be the set of all 
polynomials over . Z n  Let g(x)    ,f(x)  be polynomials in .[x] Z n  The 
sum of f and  ,g denoted by  ,g(x)  + f(x)  is obtained by adding 
coefficients of like powers of .x  The product of f  and ,g denoted by

 ,g(x) f(x)  is obtained by term by term multiplication using the 
distributive law of  ,Z n  and then gathering together terms of like powers 
of . x  Under these operations [x]Z n  is a commutative ring with unit , 
called the spolynomial of ring over .Z n We will be interested in the ring

[x] ,Z p  where p  is a prime number so that Z p  is a field . In all that 
follows p  will denote a prime number . 
 

:3.1Theorem [Factor Theorem] 
   Let 0g(x)    ,f(x)   in [x] ,Z p  and Zc p  be given . Then 

i)   there exist unique q(x)  and r(x)  in [x]Z p  such that 
     ,r(x)  +  q(x)  g(x) = f(x) where 0=r(x)  or the degree of r(x)  is less than  
     the degree of . g(x)  The polynomial r(x)  is called the remainderand  
    q(x)  is called the  ,quotient  
ii)  the remainder in (i) dividing f(x)  in [x]Z p  by c-x  is . f(c)  
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    Let 0g(x)    ,f(x)   in [x]Z p  be given . We say g(x)  divides

f(x))   |  g(x)  (   f(x)  if and only  if q(x)  g(x) = f(x)  for some q(x)  in 
.[x] Z p Then g(x)  is called a  factor of . f(x)  

 
:3.2Theorem  [Remainder Theorem] 

If [x]Zf(x) p  and ,Zc p  then c-x  in [x]Z p  is a factor of f(x)  if and 
only if . 0=f(c)  
 
    A F     field Galois  is a field F  in which the set F  has a finite number 
of elements . We will denote a Galois field with s  elements by writing

. GF(s)  By Lemma 3.2 , Z p  is a Galois field  ,p))  GF( (  where p  is any 
prime number , consisting of p  elements. Let [x]Zf(x) p  be given . Then 
any 0c   in Z p  divides f(x)  since . f(x))  c ( c =f(x) -1  Hence any 
polynomial of the form 0c     ,f(x) c   in Z p  will be called an associate of

. f(x)  
   A polynomial [x]Zf(x) p  is called eirreducibl  over Z p  if and only if 
the only divisors of f(x)  are f(x)  and its associates . Those polynomials in

[x]Z p  which are irreducible over Z p  will play a key role in the 
construction of Galois fields . We now record some properties of Galois 
fields . 
 

:3.3Theorem  Let GF(s)=F  be a Galois field with s  elements and let  
. {0}-F =F*  Then  

  i)   p=s n  for some number  ,1n   and some prime .p This prime p  is the 
     characteristic of . F  
ii) F*  under the multiplication of F  is a cyclic group . Hence there exists  
     some Fa *  such that  .   a    ,. . .    ,a    ,a    ,1=a    =F 2-s210*  Such an   
    "a"  which generates F*  is called element primitive a  of . F*  
iii) Let [x]Zq(x) p  be an irreducible polynomial over ,Z p  where p  is a  
      prime number and the characteristic of . F Then q(x)  divides . 1-x 1-s  
iv) x-xs  is  a product of all the monic  irreducible  polynomials  over 
     [x]Z p  of degree dividing ,n  where p  is the prime characteristic of F  
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      and . p=s n  
v)   There exists a Galois field with pn  elements for any prime . p  
 

:3.4Theorem  Let  a   ,. . .   ,a   ,a   ,0    = F 1-s21  be a   ,p=   s ,GF(s) n

where p  is a prime number . Then the polynomial x-xs  in [x]Z p  
factorizes into linear factors 

)a - x ( . . . . ) a - x (  ) a - x ( x  = x-x 1-s21
s . 

 
  Let F  be a Galois field with p=s n  elements . Then an irreducible 
polynomial [x]Zf(x) p  is called a polynomial eirreducibl primitive  if 

and only if f(x)  divides 1-xm  for 1-s=1-p=m n  but for no smaller . m  
  Now we give a recipe to construct a Galois field of order  ,s where

p     ,p=s n  is a prime number , and 1n   is an integer . 
When  ,1=n  by Lemma 3.2 the ring Z p  is a p) GF(  under addition and 
multiplication  mod  ,p  
When  ,2n   we consider the polynomial x-xs  in [x] ,Z p  and 
  i) Factorize x-xs  into irreducible factors over .[x] Z p  Select all the 
irreducible polynomials in this factorization whose degree equals . n  Let us 
say there are k  of them . (x)g   ,. . .   ,(x)g   ,(x)g k21  

ii) From the  sgi
,  in (i) select those (x)gi which are primitive . We can 

develop the Galois field using any of these irreducible polynomials . (x)gi

However picking a primitive (x)gi  gives a better description of the field for 
computational purposes . It actually provides a primitive element (a cyclic          
generator) for the field . From now on we will work with primitive 
irreducible polynomials . 
iii) Suppose we have chosen a primitive irreducible polynomial of degree n   
from (ii). Let us call this selection . g(x) If we cannot decide on a primitive 
one , we can simply pick any (x)gi  from (ii)    .  
iv) Let     :[x]   Zf(x)     = F p degree of  ,   1-n   f(x) i.e. F  is the set of 
polynomials of the  form x a  + . . . .  +  x  a  +  x a  +  a 1-n

1-n
2

21_  with . Za pi
Let (x)f    ,(x)f 21  be in . F To add (x)f 1  and  ,(x)f 2  we do term by term 
addition of polynomials reducing the coefficients mod .p To multiply (x)f 1
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with (x)f 2  we do the usual multiplication reducing the coefficients mod . p
Then we divide this product by  ,g(x)  where g(x)  is chosen in (iii) , and 
take the remainder as the product of f 1  with .  f 2  We call this procedure of 
adding and multiplying arithmetic g(x))    ,p  ( mod . 
v) The set F  defined under g(x))  ,p  ( mod  arithmetic is a Galois field of 
order pn . To verify this , we refer to Herstein (1996)  . 
Consider a Galois field GF(s)  of order ,s  where  ,p=s n  with p  an odd 
prime .  An element GF(s)a  is called a residue quadratic  (for short QR) 
if and only if there exists some GF(s)b  such that . b=a 2  If no such b
exists  `a`  is called a quadratic nonresidue. Note that 0 , 1 are always 
quadratic residues of . GF(s)  
     Let x  be a primitive element of the multiplicative group  ,{0}-F=F*

where F  is a p     ,p=    s ,GF(s) n  is an odd prime . Then all the quadratic 
residues of F  are in the set  .    x   ,. . .   ,x   ,x   ,x     = QR 3-s420  
We illustrate the steps (i) - (v) by developing some examples of Galois 
fields which will be useful later in this paper . 
 

:3.1Example  We construct . GF(7)=F  Since 7 is a prime number we 
take   6   ,5   ,4   ,3   ,2   ,1   ,0   = Z = F 7  under mod 7 addition and 
multiplication . The addition and multiplication tables are given below : 
 

 
+7  

 
0 1 2 3 4 5 6   *7  0 1 2 3 4 5 6 

 
 
 0 
 1 
 2 
 3 
 4 
 5 
 6 

 
0 1 2 3 4 5 6 
1 2 3 4 5 6 0 
2 3 4 5 6 0 1 
3 4 5 6 0 1 2 
4 5 6 0 1 2 3 
5 6 0 1 2 3 4 
6 0 1 2 3 4 5 

   0 
 1 
 2 
 3 
 4 
 5 
 6 

0 0 0 0 0 0 0 
0 1 2 3 4 5 6 
0 2 4 6 1 3 5 
0 3 6 2 5 1 4 
0 4 1 5 2 6 3 
0 5 3 1 6 4 2 
0 6 5 4 3 2 1 

 
 Note that 3 is a primitive element of F  and 

   .  4  ,2  ,1  ,0   =    3   ,3   ,3   ,0   = QR 420  



On Some Methods of Constructing Hadamard Matrices 

96 
 

:3.2Example  We construct . GF(9)  Note that  ,3=9 2  so the base prime 
is 3  and the basic Galois field we work with is .Z 3  Factorize x-x9 into 
irreducible polynomials over [x]Z 3 : 

2)+x +x( 2)+x 2 + x( 1) + x ( 1)+1)(x- x ( x = 1)+x ( 1)-x ( x  = 1) -x ( x  = x-x 2224489

By Theorem 3.2.2 , the remainder theorem , the polynomials  ,1+x=(x)g 2
1  

2,+2x+x=(x)g 2
2  and 2+x+x=(x)g 2

3  are irreducible. Of these the 
polynomial (x)g1  is not primitive since . 1-x|1+x 42  From the factorization 
of x-x9  it is clear the polynomials (x)g2  and (x)g3  are both primitive 
irreducible polynomials . We will work with . (x)g2  
Consider the set   ,[x]   Za    ,a       :   x a  +  a    = F 311 __  under 

(x))g   ,3 ( 2mod  arithmetic . Then F  has the nine elements as follows : 










 2=a  

 1=a  

 0=a,0=a

1

1

1_

:

2x

x

0

 ,   










 2=a  

 1=a  

 0=a,1=a

1

1

1_

:

2x+1

x+1

1

 ,   










 2=a  

 1=a  

 0=a,2=a

1

1

1_

:

2x+2

x+2

2

 

 By Theorem 3.3 (ii) , 
   x 2+2    ,x+2    ,2    ,x 2+1    ,x 2    ,x+1    ,x    ,1   = {0}-F =F*  is a 

cyclic group under multiplication , and x  is a primitive element (generator) 
for . F*  To verify this we calculate sucessive powers of  ,x  using

(x))g  ,3 ( 2mod  arithmetic to get:  
1+x=x    ,x=x    ,1=x    ,0 210   (replacing x2 by  ,1)+x  

1+2x   = x+1+x   = x  + x   = x 23 ,
  ,2  = x+2+x 2   = x  + x 2   = 1)+x (2 x   = x 24  

x 2  = x5 , 2+2x  = 1)+x 2(  = x 2  = x 26 ,
  ,2+x  = x 2 +2 + x 2  = x 2  + x 2  = x 27  

.  1  = x 2+1+x  = x 2 +x  = x 28  Thus the powers of x  generate  ,F* and x  
is a primitive element of . F*  
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Let us summarize our construction . The elements of F  are  
  2x   ,2x2 , x2   ,2   ,1x2   ,1x   ,x   ,1   ,0   x   ,x , x   ,x   ,x   ,x   ,x   ,1   ,0    = F 765432      

The (x))g    ,3 ( 2mod  arithmetic tables , one for addition and the other for 
multiplication  are as follows : 
 
 
+3  

 
  0        1        x      x+1     2x+1     2     2x     2x+2    x+2   

 
    0     
1         
x         
x+1     
2x+1   
2 
   2x 
2x+2   
x+2 
 

 
  0        1        x      x+1     2x+1     2     2x     2x+2    x+2 
  1        2      x+1   x+2     2x+2     0    2x+1    2x        x    
  x       x+1    2x    2x+1        1     x+2    0         2     2x+2 
 x+1   x+2   2x+1 2x+2       2        x      1         0        2x 
2x+1 2x+2    1       2         x+2     2x    x+1      x         0 
  2        0       x+2    x           2x       1    2x+2  2x+1    x+1  
2x     2x+1     0       1         x+1   2x+2   x         x+2    2  
2x+2   2x       2       0           x      2x+1   x+2    x+1    1 
  x+2    x      2x+2  2x          0        x+1   2        1      2x+1 

 
 

*,+ 33  
 
 
  0        1        x        x+1   2x+1     2        2x      2x+2    x+2 

 
   0      
1         
x         
x+1   
2x+1  
2 
  2x 
2x+2  
x+2 
 

 
  0        0        0          0        0         0         0          0         0  
  0        1        x        x+1   2x+1     2        2x      2x+2    x+2 
  0        x      x+1    2x+1      2        2x     2x+2     x+2      1 
  0      x+1  2x+1       2        2x       2x+2   x+2      1         x 
  0    2x+1     2          2x     2x+2      x+2   1          x       x+1 
  0        2       2x     2x+2      x+2     1         x         x+1  2x+1 
  0        2x   2x+2     x+2      1          x        x+1   2x+1     2 
  0    2x+2    x+2       1         x          x+1  2x+1     2        2x 
  0      x+2     1           x        x+1     2x+1   2         2x    2x+2 
 

 
From the above presentation the quadratic residue set in GF(9)  is  

    .     2+2x   ,2   ,1+x   ,1   ,0    =   x    ,x    ,x    ,x    ,0    = QR 6420  
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:3.3Example  We construct . GF(11)=F  Since 11 is a prime number 
we take    10   ,9   ,8   ,7   ,6   ,5   ,4   ,3   ,2   ,1   ,0   = Z = F 11  under mod 11 
arithmetic . The mod 11 addition and multiplication tables are as 
follows: 
 

 
Note that 2 is a primitive element in . GF(11) Thus 

                             9   ,5   ,4   ,3   ,1   ,0   =   2   ,2   ,2   ,2   ,2   ,0   = QR 86420 . 
 

:3.4Example To construct  ,GF(19)=F  since 19 is a prime number 
then we take 

   18   ,17   ,16   ,15   ,14   ,13   ,12   ,11   ,10   ,9   ,8   ,7   ,6   ,5   ,4   ,3   ,2   ,1   ,0   = Z = F 19

under mod 19 arithmetic . The addition and multiplication tables may be 
constructed on the same principles as in Example 3.2.3 . Note that 3 is a 
primitive element mod 19 and the set of quadratic residues in F  is

  .    17   ,16   ,11   ,9   ,7   ,6   ,5   ,4   ,1   = QR  
 

:3.5Example Suppose that the problem is to determine the quadratic 
residues and quadratic nonresidues in the Galois field . GF(25)   
   i)  First we determine a quadratic  primitive irreducible polynomial over 

. Z 5  To this end we take the factor 1+x12  in the factorization
 ,1)+x1)(-x(=1-x 121224  and factorize it into irreducible factors over Z5 ( 

remember that the arithmetic on the coefficients is done mod 5) :     
.  1)+x-x( 1) +x ( = 1 +) x ( = 1+x 48433412  

 
+11  

 
0   1   2   3   4   5   6   7   8   9   10  *11  0   1   2   3   4   5   6   7   8   9   10 

 
   0 
   1 
   2 
   3  
   4 
   5 
   6 
   7 
   8 
   9 
  10 

 
0   1   2   3   4   5   6   7   8   9   10 
1   2   3   4   5   6   7   8   9   10   0 
2   3   4   5   6   7   8   9   10   0   1 
3   4   5   6   7   8   9   10   0   1   2 
4   5   6   7   8   9   10   0   1   2   3 
5   6   7   8   9   10   0   1   2   3   4 
6   7   8   9   10   0   1   2   3   4   5 
7   8   9   10   0   1   2   3   4   5   6 
8   9   10   0   1   2   3   4   5   6   7 
9   10   0   1   2   3   4   5   6   7   8 
10   0   1   2   3   4   5   6   7   8   9 

    0 
   1 
   2 
   3 
   4 
   5 
   6 
   7 
   8 
   9 
  10 

0   0   0   0   0   0   0   0   0   0    0 
0   1   2   3   4   5   6   7   8   9   10 
0   2   4   6   8   10 1   3   5   7    9 
0   3   6   9   1   4   7   10 2   5    8 
0   4   8   1   5   9   2   6   10 3    7 
0   5  10  4   9   3   8   2   7   1    6 
0   6   1   7   2   8   3   9   4   10  5 
0   7   3  10  6   2   9   5   1   8    4 
0   8   5   2  10  7   4   1   9   6    3 
0   9   7   5   3   1  10  8   6   4    2 
0  10  9   8   7   6   5   4   3   2    1 
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        Now                                    
3)+x2)(+x(=1+x 224 , 

4)+x 2+x ( 4) +x 2 - x ( = ) x 2 ( - )4 +x ( = 1+ x -x 2424222448  
2)+x -x( 2)+x +x( = x -)2+x( = 4 +x 2-x 2222224  

3)+2x-x( 3)+x 2+x( = )x (2-)3+x( = 4 +x 2+x 2222224  
         Thus 

.  3)+x 2-x( 3)+x 2+x( 2)+x -x( 2)+x +x( 3)+x( 2)+x( = 1+x 22222212  
 ii) Now 3)+x2)(+x(=1+x 224  divides .  1-x8 Hence neither 2+x=(x)g 2

1

nor 3+x=(x)g 2
2  are primitive irreducible polynomials over . Z 5  However, 

each of 3+2x+x=(x)g      ,2+x-x=(x)g      ,2+x+x=(x)g 2
5

2
4

2
3  or

3+2x-x=(x)g 2
6  are primitive irreducible polynomials over . Z 5  Any of 

these may be used to develop GF(25) giving both a multiplicative and 
additive representation to the elements of . GF(25)  If either (x)g1  or (x)g2 is 
used we would obtain the additive representations of the elements of
GF(25)  under (x))g   ,5 ( imod  arithmetic,  ,2  1, =i but not the multiplicative 
representation .  
iii) Suppose we select 2+x+x=(x)g=g(x) 2

3  to develop . GF(25)  Then 
under 2)+x +x   ,5 ( 2mod  arithmetic the set  

 
             Zb    ,a     :   b +x a    = 5  

is a Galois field of order 25 . Below we tabulate the elements of F  in their 
multiplicative and additive form : 
 
0     1    x     2x       3x        4x         5x         6x         7x        8x         9x       10x      
0    1     x  3x4   2x4    2x3    4x4       2         x2      1x3     4x3    4x       
 

11x    12x  13x  14x    15x      16x     17x   18x    19x   20x     21x      22x         23x             
3x3  4   x4  2x   3x    3x2 1x    3     x3   4x2  1x2  1x4    2x2      

 
iv)  From the table in (iii): the quadratic residues in GF(25)  is the set 

  .    1+x 4   ,4+x 2   ,3   ,3+x 2   ,2+x   ,4   ,4+x   ,1+x 3   ,2   ,2+x 3   ,3+x 4   ,1   ,0   = QR
The quadratic nonresidues in GF(25)  is the set 
  .    2+x 2     ,1+x 2     ,x 3     ,1+x    ,3+x     ,x 4     ,3+x 3     ,4+x 3    ,x 2     ,4+x 4     ,2+x 4     ,x    
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:Remarks    
a)  It is interesting to note that in Example 3.5,  2 and 3 are quadratic   
     nonresidues in GF(5)=Z 5  but are quadratic residues in . GF(25)   

b)  One can establish that there are exactly 
2

p)-p( 2

monic irreducible  

      quadratic polynomials over p ,Z p  a prime . For the case  ,5=p there  

      are thus 10=
2

5)-(25  monic irreducible quadratic  polynomials over  

     . Z 5  Six of these are given  in (ii) of Example 3.5 . The remaining four  
      of these monic irreducible quadratic polynomials appear as factors of 
     1-x12 :  

1)+x1)(-x(=1-x 6612     
.  4)+x 2-x( 4)+x 2+x( 1)+x-x( 1)+x+x( 3)+(x 2)+(x 1)+1)(x-(x = 2222  

Of course none of these four monic irreducible quadratic polynomials are 
primitive since each divides .  1-x12  
 

4.      Paley's Constructions 
 
Firstly, we have shown that for the even prime 2=p and any positive 
integer k a Hadamard matrix of order 2=n k  may be constructed by 

repeatedly taking the Kronecker product of 








1-1

11
  = H 2 with itself k

times . This raises the question of  the construction of Hadamard matrices 
whose order n  is related to an odd prime power.  In this connection Paley 
(1933) offered the following two constructions : 
 
(P1)    a  Hadamard matrix of order 1+s=n  can be constructed where s  is 
a prime power , say p      ,p=s r  a prime and . 4) ( 3s mod  
(P2)    a  Hadamard matrix of order 1)+(s 2=n  can be constructed, where

p=s r is a power of a prime p and . 4) ( 1s mod  
       The purpose of this part is to develop and present the Paley 
constructions outlined in (P1) and (P2) . Both involve the use of Galois 
fields . GF(s) Unlike the Kronecker product construction which requires at 
least one pre-existing Hadamard matrix to implement it , the Paley 
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construction produces a Hadamard matrix once the order of the matrix is 
specified as in (P1) or (P2) . 
 
        The following notation and setting will be used in the formulation of 
the results below. Let GF(s)=F be a Galois field of order s where p=s r and
p is an odd prime number. Let {1,-1}=H  be the two element 

multiplicative subgroup of the multiplicative group of the nonzero real 
numbers . Recall that the set of nonzero elements of  ,F call it  ,F* is a cyclic 
group under multiplication . The following mapping , known as a

  ,character and some of its properties will be helpful in detailing the Paley 
constructions : H  F :  *  is the mapping defined by 







.   F in nonresidue quadratic a is a        ,1-          

   ,F in residue quadratic a is a       ,1
  = (a)

*

*

  

 
:.14Lemma  The character H F : *  is a group homomorphism 

between the two multiplicative groups . 
:Proof   Note that the product of two nonzero quadratic residues or the 

product of two quadratic nonresidues is a quadratic residue , whereas the 
product of a nonzero quadratic residue and a quadratic nonresidue is a 
quadratic nonresidue . From this it is  immediate that (b) (a) = b) (a  for 

all b   ,a in F* and the lemma is established. □ 
 

:.14Corollary In F there are precisely
2

1+s quadratic residues and
2

1-s

quadratic nonresidues . Moreover .  0 =(a)
Fa *




 

:Proof From Lemma 4.1 , the kernel of  consists of the quadratic 
residues in F* and the only other coset of  consists of the quadratic 
nonresidues . Since the cardinality of   ,1-s|=F|   ,F ** it follows that F* has

2
1-s quadratic residues and 

2
1-s quadratic nonresidues . Since the zero 

element 0 in F is also a quadratic residue the total number of quadratic 

residues in F is
2

1+s and the corollary is established .  □ 
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:.24Lemma  
 i)    When 4) ( 1p=s r mod then  -1   is a quadratic residue in . F       
ii)    When 4) ( 3p=s r mod then  -1   is a quadratic nonresidue in . F  

:Proof Let x  be a primitive element (generator) of the cyclic group . F*

Since the order of F*  is 1-s  we  conclude that . 1=x 1-s  Hence
. 0=1)+x1)(-x( /21)-(s/21)-(s  Since F  is a field and the order of x  is 1-s  we 

conclude that 0=1+x /21)-(s  or . -1=x /21)-(s When 4) ( 1s mod then 1+4k=s
for some integer . k Then -1= ) x(= x =x 2k2k/21)-(s  and -1 is a quadratic 
residue establishing (i) . When 4) ( 3s mod  then 3+4m=s  for some 
integer . m Then -1=x=x 1+2m/21)-(s  and x  is a quadratic nonresidue 

establishing (ii) . □ 
 

:.24Corollary         
 i)    When 4) ( 1p=s r mod then (a)=(-a)   for all a  in . F*         
ii)    When 4) ( 3p=s r mod then (a)-=(-a)  for all a  in . F*      

:Proof Using Lemma 4.1 , for any Fa we have
(a).(-1)=((-1)(a))=(-a)    When 1=(-1)    ,4) ( 1s mod  and when

-1=(-1)    ,4) ( 3s mod  by Lemma  4.2 and the definition of .  From this 

both (i) and (ii) follow completing the proof .                                □ 
 
         In the following it will be useful to extend the definition of the 
character  to all of F by placing  ,0=(0) where the first 0 is the zero 
element of F and the second zero  is the real number 0 . With this extended 
definition we have  as a map from F to the set{-1,0,1} . The following 
lemma will be most helpful in establishing our first main result . 
 

:.34Lemma -1=c)+(b(b)
Fb




, if 0c  . 

:Proof  .    0=c)+(0  (0)  Since F is a field , when b    ,0b -1 exists . 
Let . c)+(bb=z -1 Then 0z  when  ,-cb  and z is the unique element in F
such that . c+b=bz Let  .   -cb  ,Fb :    ) c+b (b =z    = K *-1  We note 
that   ,{1}-F=K * where 1 is the unit element of . F Note that 1c)+(bb-1 
for any ,Fb * for otherwise b=c+b  from which  ,0=c a contradiction . 



Journal of Humanities and Applied Science 

103 
 

Hence . {1}-F  K * Next , let . {1}-F   x *  Define . )1-c(x=b -1 Then  ,0b 
for otherwise 0=c  or  ,1=x neither of which is the case . Moreover 

x=1)-(x+1=c] +)1-x ( 1)[c-x (c=c)+(bb -1-1-1 from which we conclude  
that . Kx Hence . K{1}-F*  In all . {1}-F=K * Now , 

  ,z) (b (b)=  ) c+b ( (b) = ) c+b ((b) 
-{1}FzFbFb **

 


since

. {1}-F=K *  By Lemma 4.1,  (z) (b) = z) (b  and thus    
  ,-1=1-0= (1)-(z)= (z)=  (z)  ](b) [=  ) c+b ( (b)

Fz-{1}FzIN

2

-{1}FzFb ***

 


using Corollary 4.1 .                                                                  □ 
 

     A real matrix M of order n  is called  symmetricskew  if and only if
. M-=M  It is clear that any skew symmetric matrix has each of its 

diagonal entries equal to zero. Recall that a  Hadamard matrix H of order
n  is called a Hadamard skew  matrix if and only if  ,S+I=H n where S  
is a skew symmetric matrix . Clearly to obtain a skew Hadamard matrix 
we need a skew symmetric matrix whose off diagonal entries are +1 or  -1.  
     We now introduce a matrixQ of order p   ,p=s r an odd prime , and 
study its properties in the lemmas below . This matrixQ will play a crucial 
role in both Paley constructions. The definition of Q is based on the Galois 
field F of order p  ,p=s r an odd prime and uses the character  defined on

: F  let       ,. . .    ,    ,    ,   = F 1-s21  _ be  a listing of the s elements of F
with . 0= _ Define 

(3.1)     )-(=q , )q(=Q ijijsxsij   
 

:.44Lemma The matrix Q  is a matrix with entries in the set {-1,0,1} .  
When 4) ( 1 p=s r mod  then Q  is a symmetric matrix . When 

4) ( 3 p=s r mod  then Q  is a skew symmetric matrix . 
:Proof The first statement of the lemma follows from the definition of 

the character  .  
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Moreover











  ,4) ( 1p  when ,)-(  

  ,4) ( 3p  when ,)-(-  
 = ))-((-1)( = )-( = q

r
ji

r
ji

jiijij
mod

mod




   

                                                        










  ,4) ( 1p  when ,q       

  ,4) ( 3p  when ,q-  
 =

r
ji

r
ji

mod

mod
 

using Corollary 4.2 . This completes the proof .                          □ 
 
      The following notation will be useful and will be employed throughout : 

J mxn will denote a matrix of order mxn each of whose entries is +1 . We 
simply write J when its dimension is apparent from the context. 

:.54Lemma Q  satisfies the following : 
 i)  ,J -I s=QQ s  
ii)  ,0 =Q J = J Q  

:Proof         
 i)    Let  ,)b(=B = QQ ij then 
      =bij inner product of the i-th row of Q with the j-th row of Q  
         1- s=)-( )-(qq = jkik

k
jkik

k

 =     if j  ,=i and equals  -1      

       if ji  using Lemma 4.3 and taking  ik -=b and 0-=c ji  in    
       that lemma . This establishes (i). 
ii)  0=QJ follows from 0=)-( ji

j
 using Corollary 4.1 .             □ 

        We now use the matrix Q defined in (3.1) , to define the following 
matrix which is of major importance in the Paley constructions : 

(3.2)       

Q J

J- 0
=S

sx1

1xs

1)1)x(s+(s+










 

:.64Lemma  Let p   ,p=s r an odd prime , with . 4) ( 3p mod Then the 
matrix S defined in (3.2) has the properties : 
 i)    ,-S=S  namely S is skew symmetric ,               
 ii)  .  I s= SS 1s+  

:Proof  
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 i)    This follows from Lemma 4.4 , since Q  is skew symmetric when
. 4) ( 3p mod   

 

ii)    
 

using Lemma 4.5 (i). This completes the proof .                           □ 
 
      We are now ready to give the first Paley construction  (the construction 
outlined in statement (P1)) . 
 

:.14Theorem  [The First Paley construction ; Paley (1933)] 
      Let p   ,p=s r an odd prime , with . 4) ( 3p mod  Then the matrix

 ,S+I=H 1s+1s+  where S  is defined as in (3.2) is a skew Hadamard matrix 
of order . 1+s  

:Proof
 ,I1)+(s = I s+S-S+I = S S+S+S+I = )S+(I S)+(I = HH 1s+1s+  using  

Lemma 4.6 . Hence H  is a skew Hadamard matrix of order . 1+s  This 

completes the proof .  □ 
 
        We illustrate Theorem 4.1 by constructing a Hadamard matrix of order 
28 . This presented in the following example . 
 

:.14Example To make the presentation self contained we recall some 
definitions from the second part of this paper . In addition we will require 
the Remainder Theorem [Theorem 3.2] and two other theorems quoted 
below ; the proofs of the latter two theorems may be found in any standard 
book on abstract algebra which discusses Galois fields, for example, 
Herstein (1996) . 
Throughout p will denote a prime, 1n  will be an integer and let .  p=s n   
A polynomial f(x) in the polynomial ring [x]Z p will be called reducibleiff  

(x)g  .  (x)g=f(x) 21  for some [x]Zg pi  with degree <   gi  degree f for
.  2  ,1=i Otherwise f is called e.irreducibl Moreover, f(x)  is called monic

iff the coefficient of its highest degree term is 1 . An irreducible polynomial
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f(x) in [x]Z p  is called primitive  iff f(x)divides the polynomial 1-xm for
1-s=m but does not divide 1-xm for  any m such that .   1- s< m  1  

The importance of irreducible polynomials stems from the following : 
        (GF1)  let g(x) in [x]Z p be any monic irreducible polynomial of degree 
                     ,n   
        (GF2)   let  [x]   ,Z f(x)       :     f(x)       =F p degree  .       1-n  f(x)  
Then  the  underlying set F under g(x))    ,p  (mod  arithmetic is a Galois 
field of order .   s We write GF(s)  as a shorthand for the Galois field of 
order s and it denotes the  pair g(x)))    ,p  (      ,F ( mod  where g(x)  is 
defined in (GF1) and F in (GF2).  
       Let .   {0}-F=F* We have mentioned in the second part that F* is a 
cyclic group under the multiplication in F . The importance of monic 
irreducible primitive polynomials is due to the following : 
(GF4)   if  the monic irreducible polynomial g(x)  in (GF1) is also primitive 
then the cyclic group F* is generated by the polynomial x=q(x)  in F under

g(x))    ,p  ( mod  arithmetic . In fact F* has 1)-(s  generators, where   is 
the Euler - function, and   .      2- s i  0      :     x     =F i*  Thus F x *t is 
also a generator of F*  iff   
                      1- s t   and t is relatively prime to 1-s . 
    The above discussion raises two questions :  
                      1Question :   How does one find monic irreducible polynomials  
                                               g(x)  in [x]Z p of degree n ?                       
                     2Question :   How does one find monic irreducible primitive 
                                               polynomials in [x]Z p of degree n ? 
Let us consider the special polynomial .   x-x =(x)Q s

s  An answer to both 
questions can be given in terms of factorizing (x)Qs  in [x]Z p . The answer 
is not too satisfactory, as we shall see, because often (x)Qs is very difficult 
to factorize .  

:ATheorem (i)   Let g(x) be any monic irreducible polynomial of degree 
dividing .  n Then g(x)  divides (x)Qs . 
(ii)   The polynomial (x)Qs  equals the product of all monic irreducible 
polynomials whose degrees divide . n  
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(iii)   The number of monic irreducible polynomials of degree n is equal to 

n
1)]-(s[  where   is the Euler -  function .     

        The next result reduces the labour involved in checking that an 
irreducible polynomial of degree n is primitive in certain cases . 

:BTheorem  Suppose that .   4) ( 3p mod Let g(x)  be a monic 
irreducible polynomial of degree . n Consider the Galois field

.   g(x))    ,p  (     ,F ( =GF(s) mod Then,   
if -1=x 1)/2-(s  under g(x))    ,p  ( mod  arithmetic then g(x)  is primitive .    
       We are now ready to construct H 28  using the first Paley method . 
We give the construction procedure in steps . In this construction we 
need to develop )3GF( 3 so that 3=p=n  and 27=s . 

1Step .  Find a cubic monic primitive irreducible polynomial in
[x]Z 3 . At first glance this step seems easy . According to Theorem A 

we need to factorize  x-x=(x)Q 27
3  into irreducibles of degree 

dividing 3 . The polynomial we seek is among the factors . Now
1)+x(  1)-x( x  = x-x 131327 and by the Remainder Theorem 1-x13 and

1+x13  have 1-x  and 1+x  as factors respectively . Upon division by 
1-x  and 1+x  we are left with two lengthy 12 degree polynomials 

which are indeed very difficult to factorize . So we abandon this 
approach and try a different strategy . 
 
This strategy works well when n  is small and prime . We now present 
the strategy as a sequence of problems and solutions .   
      A cubic monic polynomial in [x]Z 3 has the form : x + x c + x b + a 32 with

c     ,b     ,a  in Z3 . Hence there are precisely 27 such polynomials . 
 1Problem . Find all the cubic monic reducible polynomials in [x]Z 3 . 
 Solution .       Using the Remainder Theorem it may be verified that the list  
                        of 19 monic cubic polynomials are all reducible : 
 (i)  ,xx;+x+xx;+x-xx;-x+xx;-x-x;x-x;x+xx;+xx;-x 323232323232333        
(ii)       ,1-x-x+x1;-x+x-x1;+x-x-x1;+x+x1;+x+x1;-x 2323233233    
(iii)      .1-x+x1;+x+x+x1;-x-x1;+x 323233  
In fact q(x)  is in (i) iff 0=q(0)  ; q(x)is in (ii) iff 0=q(1) and q(x)is in (iii) iff  

0=q(2) . 
2Problem .   Find all the cubic monic irreducible polynomials in [x]Z 3 . 
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                        Solution . The purpose of Problem 1 was to eliminate the 19  
                         Monic reducible polynomials of the possible 27 monic cubic  
                         polynomials . The remaining 8 must be monic irreducible  
                         and hence any of them is suitable to develop )3GF( 3 . We  
                         list the 8 in 2 groups : 
                  (PI)   ,1+x+x-x1;+x-x+x2;-x-x2;-x-x 2323233  
               (NPI)   .1-x+x1;-x+x+x1;-x-x1;-x-x-x 2323323  
    Again the Remainder Theorem may be used to verify that the 8 
polynomials listed in (PI) and (NPI) are irreducible .  

3Problem . [This problem addresses Step 1] . Find a monic cubic                        
primitive irreducible polynomial in [x]Z 3 . 
Solution .        The polynomial we seek is among the 8 polynomials listed 
                        in the solution to Problem 2 . By Theorem A (iii) there are 

                      4=
3

12=
3

(26)  such cubic primitive irreducibles . 

There is no quick method of identifying which 4 amongst the 8 are 
primitive . We resort to a well known mathematical technique : trial and 
error . We simply pick one of the 8 listed polynomials and apply Theorem 
B  to it and continue on until we are succesful . In this way we find that the 
4 polynomials listed in the group (PI) are primitive and the remaining 4 are 
not. As an illustration let us verify that the irreducible polynomial

2-x-x=g(x) 3 is primitive. Consider )3GF( 3
 under g(x))    ,(3 mod

arithmetic . Then under this arithmetic we have the relation reduction  
                                        (RR) :   2+x=x3    
Now under g(x))    ,(3 mod arithmetic we have  
     )2+(x =  )x( = x 44312 using (RR) 
                       ,1+2x+x2+x= 34 expanding 
                       1+2x+2)+2(x+2)+x(x= using (RR) 
                       2+x= 2  
Hence 2x+2+x  = 2x+x  = ) 2+x ( x  = x 3213  using (RR) .  
                                      ,1-=2=  
That is, -1=x13 and by Theorem B, g(x)  is primitive . 
      The next problem is now unnecessary but it illustrates Theorem A . 

4Problem .  Factorize x-x=(x)Q 27
s  to illustrate Theorem A . 

Solution .        In this case 3=n . Thus the only irreducibles of degree 
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                       Dividing 3=n  are of degree 1 or 3 . Those of degree 1 are   
                       Clearly   ,1-x       ,x  1+x  and those of degree 3 are  listed in  
                       (PI) and (NPI) . Hence 













     1)-x+x(  1)-x+x+x(  1)-x-x(  1)-x-x-x(  1)-(x     

     1)+x+x-x(  1)+x-x+x(  2)-x-x(  2)-x-x(  1)+(x     
=1-x

2323323

2323233

26

Indeed the factors in the first line multiply out to 1+x13 and those in the 
second line multiply out to 1-x13  

2Step .  Select a monic cubic primitive irreducible polynomial and use it   
                  to develop )3GF( 3 . Write the elements of F in both the additive  
                  form and as powers of its cyclic generator x . 
This is the second crucial step in the construction process . We choose the 
cubic primitive irreducible polynomial 2-x-x=g(x) 3 . The underlying set
F of )3GF( 3 is then       ,   Z    c     ,b     ,a  :  c + x b  +x a    =F 3

2  and
F under ) 2-x-x=g(x)     ,3 ( 3mod  arithmetic  is a Galois field of order 27.  
To facilitate computation under g(x))   ,(3mod  arithmetic we will, as before, 
use the reduction relation : 
                               (RR) :     2+x=x3  . 
Since g(x) is primitive the cyclic group {0}-F=F* has x  as a generator . 
Hence   .        25  i  0   :x      =F i*  For convenience, we rename the 27 
elements of  F  as follows: 

0=1- (zero element of 1=x=        ,)  F _
_ (unit element of    ,)  F and in 

general    ,x= i
i  .   25  i  0  Before we develop the additive (polynomial) 

and power form for each element of   ,F a very crucial step for the Paley 
construction, let us demonstrate a particular calculation by finding the 
additive form of .   F x *5 We use (RR) as often as necessary. Now 

2+x+x2=x2+2+x=x2+x=2)+(xx=)x(x=x 22232325 . Thus the 
additive form of x5  is 2+x+x2 2 . Using this method we can develop the 
additive form of each .   xi Since g(x) is primitive, we are guaranteed that we 
can do 26 such calculations in succession and thereby exhaust F* obtaining 
the additive form of each element of .   F In the table below we record the 
27 elements of F in their additive and power forms and identify each with 
the appropriate symbol  i . 
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3Step .  Construct the Paley matrix )q(=Q ij of order 27 defined in (3.1) 

of part three . 
Recall that the entries qij are defined as follows : 

 
The Paley matrixQ will be presented in partitioned form ]  Q | Q  [=Q 21 , 
where Q1 is of order 27x15  and Q2  is of order 27x12  at the end of this 
example . The vertical and horizontal margins will be labelled by the 
elements  i  of .  F Crucial to developing the entries of Q  is table (T) of 
Step 2 . We illustrate how table (T) helps in developingQ by solving the 
next problem . 
         5Problem .   (i)    Compute the entries q 22  ,4 and q 8  ,4 ofQ . 
                                  (ii)   Explain why q- =q jij i for all .j     ,i           
         Solution . 
(i) Now ,x=x+x=2)+x+x(2-2)+(2x=x-x=- 1022522

522  using table  
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(T) twice . Since x10 is a quadratic residue in F , 1 =q 22  ,5 . 

Similarly, ,x=2+2x-x=2x)+x(-2)+x(2=x-x=- 1122248
48  using table 

(T) twice . Since x11 is a quadratic  nonresidue in F , -1=q4,8 . 

(ii) Now )--(=- jiij  . Also -1=x13 from table (T) . Suppose that

x=- k
ij  . Then .x=x.x=)--(=- 13+kk13

ijji  Thus 13+k is even iff
k  is odd and 13+k  is odd  iff k  is even . Hence q-=q jiij . 

4Step . We are now ready to construct H 28 the Hadamard matrix of order 
28 . 
      First we form the matrix S of order 28 defined in (3.2) of part three : 

                                       










QJ

J-0
=S

27x1

1x27
 , 

whereQ is the Paley matrix developed in Step 3 and J 27x1 is a vector each of 
whose entries is +1 . Finally set 
                                                  S+I=H 2828 , 
where I 28 is the identity matrix of order 28 . Due to Theorem 3.3.1, we 
know that H 28  is a Hadamard matrix of order 28 . From Problem 5 (ii), we 
know that Q  is skew symmetric and hence so is S . Thus by definition, the 
matrix H 28 constructed here is  a skew Hadamard matrix . It is interesting to 
note that each diagonal entry of H 28  is  +1 . 
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        We now develop the second Paley construction (outlined in statement 
(P2)) . This construction is based on the concept of a conference matrix . A
conference  ,matrix hereafter called a C-matrix , is a matrix M of order n
such that the diagonal entries of M are zero , the off-diagonal entries are +1 
or  -1 and . I1)-(n=MM n Clearly , if M is a C-matrix then I1)-(n=MM n
so that every pair of rows (or columns) of M are orthogonal . C-matrices 
were first used by Belevitch (1950) in studying the theoretical aspects of 
electrical networks . Later they were studied in their own right by Goethals 
and Seidel (1967) who in fact referred to these matrices as conference 
matrices . Since the second Paley construction depends on the existence of 
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C-matrices we state two results below without proof which shed some light 
on the question of their existence. 
        Let m be a positive integer and suppose ) p  . . .  p  p  p ( n = m k321

2 where
k)i(1 pi   are distinct prime numbers . Then the number 

p   . . .  p  p  p = t k321  is called the square free part of .m The following two - 
square theorem is a well known number theoretic result and includes the 
celebrated two square Fermat theorem as a special case . We refer for the proof 
to Hardy and Wright (1954) . 
 

:.24Theorem  [Two Square Theorem] 
      A positive integer  ,y+x=m 22 for some integers x and y if and only if 
the square free part of m consists of prime numbers each of which is 
congruent to . 4) ( 1 mod  The connection of the two square theorem to C-
matrices occurs via the next theorem. For a proof of this next theorem see 
Raghavarao (1971) and Wallis et al (1972) . 
 

:.34Theorem  A necessary condition for the existence of a square 
rational matrix M (i.e. M has rational number entries) of order 4) ( 2n mod
satisfying Im=MM n  for some positive integer m  is that b+a=m 22 for 
some integers a and . b  
 
      A clear inference from Theorem 4.2 and 4.3 is the following : 
 

:.34Corollary A necessary condition that there exist a C-matrix of order 
4) ( 2n mod is that the square free part of 1-n consists of prime numbers 

each of which is congruent to . 4) ( 1 mod  
 
      From Corollary 4.3 we conclude that there are many values of

4) ( 2n mod for which a C-matrix of order n does not exist . For examples 
C-matrices of orders .  etc  ,. . .  ,78  ,58  ,34  ,22 = n do not exist . For a listing 
of orders <1000 for which C-matrices exist and those orders excluded by 
the above results see Wallis et al (1972). 
 
    For certain 4) ( 2n mod a C-matrix of this order n  always exist . Indeed 
the developments earlier in this part guarantees this . To ferret out this 
pleasant situation we adjust the definition of S given in (3.2) . 
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    Consider the matrix T of order 1+s defined as follows : 
(3.3)       

Q J

J 0
=T=T

sx1

1xs

1)1)x(s+(s+

1s+ 









 

 
where the matrix Q is defined in (3.1) . 
 

:.74Lemma Suppose that the order p   ,p=s r an odd prime , of the 
Galois field F satisfies . 4) ( 1s mod Let T be the matrix of order 1+s
defined in (3.3).  ThenT is a symmetric C-matrix . 

:Proof Since Q   ,4) ( 1s mod is symmetric by Lemma 4.4 and hence so 
is . T  Further , as in the proof of Lemma 4.6 , 

  ,I   s= 
J+QQ 0

0 s
=TT 1s+

sxs














 using Lemma 4.5 (i) . Hence T is a C-

matrix , completing the proof .                                                      □ 
 
    We remark that the matrix S of order 1+s defined in (3.2) is also a C-
matrix but it is not symmetric . The second Paley construction requires a 
symmetric C-matrix and this  necessitates the adjustment of S toT as done 
in (3.3) . 
 

:2.4Example  We  construct  the  symmetric  C-matrix .T 6  First 
  4  ,3  ,2  ,1  ,0  = GF(5)  under .   *        ,+ 55  The quadratic residues of GF(5)  

is the set   4  ,1  ,0  = QR and the quadratic nonresidues is the set .   3    ,2  
Thus 

   

























0+--+

+0+--

-+0+-

--+0+

+--+0

=Q

5x5

 and    



























0+--++

+0+--+

-+0+-+

--+0++

+--+0+

+++++0

   =   T

6x6

6 . 

It may be verified that .    I 5 = T  T = T  T 66666   
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:.34Example We construct the symmetric  C-matrix .T 10  First, as in 
Example 3.2,  we consider 

      ,2x=x   ,2=x   ,1+2x=x   ,1+x=x   ,x=x   ,1=x   ,0    = GF(9) 54321_  
    2+x=x   ,2+2x=x 76  under ) 2+2x+x     ,3 (  2mod arithmetic . The set   
   of quadratic residues ofGF(9)  is    2+x 2   ,2   ,1+x   ,1   ,0   = QR  and the   
   set of quadratic nonresidues is .   2+x   ,x 2   ,1+x 2   ,x  Thus the matrix  
  )q(=Q ij of order 9 defined in (3.1) is displayed below (the horizontal and    
   vertical margins are indexed by the elements of :  ) GF(9)  

 
Then the symmetric C-matrix T 10 defined in (3.3) is obtained fromQ by 
bordering it as  follows : 








 

Q 1

1 0
   =  T

10x10

10 . 

  :.44Theorem     [Second Paley Construction ; Paley (1933)] 
 i)    If a symmetric C-matrix M of order n exists then the matrix 

       I  
1-1-

1-1
  +   M 

1-1

11
  = H n
















                                  (3.4)     

      where is the Kronecker product , is a symmetric Hadamard matrix of order
. 2n   

ii)  If T is the symmetric C-matrix of order 1+s defined in (3.3) ,where  
    4) ( 1 p=s r mod and p is an odd prime , then 

                              I  
1-1-

1-1
  +  T  

1-1

11
  = H n
















  

    is a symmetric Hadamard matrix of order . 2+2s  
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:Proof  (ii) is immediate from (i) and Lemma 4.7 . Hence we prove (i) . 
Note that H defined in (3.4) can be rewriten as    

    
















I)+(M- I-M

   

I-M I+M

   =  H .  Now by direct multiplication , 

I n 2   =  

I)+M(- I-M

   

I-M I+M

      

I)+(M- I-M

   

I-M I+M

   =  HH




































 , 

performing the block multiplication and using M=M  and .  I 1)-(n = MM n  

□ 
 
     The Paley constructions given in Theorems 4.1 and 4.4 form the 
backbone of a number of further construction results on Hadamard matrices 
based on Galois fields which have been developed since Paley's initial 
effort in 1933 described here . At this point we simply summarize some of 
these additional construction results below . We emphasize that these are 
actual constructions when the stated conditions are met , as are the Paley 
theorems , and not merely existence statements . For detailed proofs of 
these results see Hall (1967) . As in first part , the constructions below are 
of the recursive type , and use the Kronecker product when appropriate . 
 

:.54Theorem [Williamson (1944) ; Generalization of Paley's second Construction] 
If p   ,4) ( 1 p=s r mod a prime and if a Hadamard matrix H of order 1>n
is given then a Hadamard matrix of order 1)+n(s  can be constructed . 
 

:.64Theorem  
 i)    Let .  k   . . .  k  k  2 = n m21

t Suppose that either 4) ( 01+  p = k r
ii

i mod  or 
        ,1)+p ( 2 = k r

ii
i 4) ( 1 pr

i
i mod  for each .i Then a symmetric Hadamard  

        matrix of order n  can be constructed . 
ii)   Let a skew Hadamard matrix of order n  be given . Suppose that 
       ,4) ( 3 p=s r mod where p  is a prime . Then a skew Hadamard matrix   
      of order 1)+n(s can be constructed . 
iii)  Let k   . . .  k  k  2=n m21

t where each 4) ( 01+  p=k r
ii

i mod  with pi  
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       prime . Then a skew Hadamard matrix of order n  can be constructed . 
iv)  Let a skew Hadamard matrix of order n  be given . Then a Hadamard  
      matrix of order 1)-n(n can be constructed . 
v)   Let a skew Hadamard matrix of order n  and a symmetric Hadamard  
      matrix of order 4+n=m be given. Then a Hadamard matrix of order 
      3)+n(n  can be constructed. 
vi)  Let two Hadamard matrices of orders 1>n1  and 1>n2  be given . Let  
      p be a prime such that . 4) ( 1 pr mod Then a Hadamard matrix of order  
      p 1)+p ( n n rr

21 can be constructed . 
vii)  Let two Hadamard matrices of orders 1>n1  and 1>n2  be given .  
       Suppose that n  is a positive number such that 1+p=n r

1
1 for some 

       prime p1 and 1+p=4+n r
2

2  for some prime . p2 Then a Hadamard  
       matrix of order 3)+(n n n n 21  can be  constructed . 
 
 We now give some examples to illustrate the two Paley constructions . 
 

:4.4Example To construct a Hadamard matrix of order 8 , we observe 
that 8=7+1 . The quadratic residues of    6  ,5  ,4  ,3  ,2  ,1  ,0   = GF(7)  is the 
set    4  ,2  ,1  ,0   = QR  and the quadratic nonresidues is the set .   6  ,5  ,3  
Using (3.1) , and (3.2) we construct the matrix Q and the matrix S  































0++-+--

-0++-+-

--0++-+

+--0++-

-+--0++

+-+--0+

++-+--0

=Q

7x7

,   


















Q J

   

J- 0

=S

7x77x1

1x7

8x8

. 

Finally , by Theorem 4.1 , S+I=H 88 : 
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

































+++-+--+

-+++-+-+

--+++-++

+--+++-+

-+--++++

+-+--+++

++-+--++

-------+

=H

8x8

8  . 

 
:5.4Example To construct a Hadamard matrix H 12  of order 12 , there 

are two ways . First we observe that 12=11+1 . The quadratic residues of 
   10  ,9  ,8  ,7  ,6  ,5  ,4  ,3  ,2  ,1  ,0   = GF(11)  is the set 

   9  ,5  ,4  ,3  ,1  ,0   = QR  and the quadratic nonresidues is the set
 .   10  ,8  ,7  ,6  ,2  Using (3.1) , and (3.2) , the matricesQ and S are 













































0+-+++---+-

-0+-+++---+

+-0+-+++---

-+-0+-+++--

--+-0+-+++-

---+-0+-+++

+---+-0+-++

++---+-0+-+

+++---+-0+-

-+++---+-0+

+-+++---+-0

  =  Q

11x11

, 

.

Q J

   

J- 0

=S

11x1111x1

1x11

12x12

















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Thus , by Theorem 4.1 , S+I=H 1212  is the skew Hadamard matrix 
displayed below: 
 

















































++-+++---+-+

-++-+++---++

+-++-+++---+

-+-++-+++--+

--+-++-+++-+

---+-++-++++

+---+-++-+++

++---+-++-++

+++---+-++-+

-+++---+-+++

+-+++---+-++

-----------+

  =  H

12x12

12 . 

 
    Now we construct H 12 by the second Paley construction . As 12=2(5+1) , 
where 5 is a prime and  ,4) ( 21+5 mod we can use Theorem 4.4 and 
Example 4.2 to construct .H 12 From Example 4.2, and Theorem 4.4 (ii) , 

 



























0+--++

+0+--+

-+0+-+

--+0++

+--+0+

+++++0

    =  T

6x6

6 ,   and  .  
)I+T(- I-T

I-T I+T
  =  H

6666

6666
12 










 

Hence H 12 is the symmetric Hadamard matrix displayed below : 
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















































--++---+--++

---++-+-+--+

+---+--+-+-+

++------+-++

-++---+--+-+

------+++++-

-+--++++--++

+-+--++++--+

-+-+-+-+++-+

--+-++--++++

+--+-++--+++

+++++-++++++

  =  H

12x12

12   . 

 
:6.4Example We construct a Hadamard matrix of order 20 by the 

Second Paley construction . As 20=2(9+1), where 9 is a power of a prime 
and  ,4) ( 21+9 mod we can use Theorem 4.4 and Example 4.3 to 
construct H 20  as follows (we display T 10  below, it is obtained from 
Example 4.3) :  
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and then by Theorem 4.4 (ii)  

                                 










)I+T(- I-T

I-T I+T
   =   H

10101010

10101010
20 . 

A full display of H 20  is below : 
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