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ABSTRACT
Chaotic graph is a graph which carries physical characters with density variation; the
density of chaotic graphs can be fixed and unique or different, according to this the
representation of the chaoticgraphs by matrices is different to normal chaotic graphs.
Firstly, we will discuss the idea of chaotic graphs with density variation showing how to
obtain the adjacency and incidence matrix for each different case, and then we will discuss
the idea of folding for simple  chaotic graphs with density variation showing two types of
folding chaotic graphs, the first type of folding is known as topological folding; the second
type of folding concerns folding a vertex into another vertex and folding physical
characteristics into their selves, in each case we will discuss the decrease or increase the
degree of density.

Keywords: Geometric graph,chaotic graphs, density, adjacency and incidence matrix,
folding, topological folding.

INTRODUCTION
There are many physical systems whose performance depends not only on

the characteristics of the components but also on the relative locations of the

elements. An obvious example is an electrical network. If we change a

resistor to a capacitor, generally some of the properties (such as an input

impedance of the network) also change. This indicates that the performance

of a system depends on the characteristics of the components. If, on the

other hand, we change the location of one resistor, the input impedance

again may change, which shows that the topology of the system is

influencing the system’s performance. There are systems constructed of

only one kind of component so that the system’s performance depends only

on its topology. An example of such a system is a single-contact switching
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circuit. Similar situations can be seen in nonphysical systems such as

structures of administration. Hence it is important to represent a system so

THAT ITS TOPOLOGY CAN BE VISUALIZED CLEARLY.

One simple way of displaying a structure of a system is to draw a diagram

consisting of points called "vertices" and line segments called "edges"

which connect these vertices so that such vertices and edges indicate

components and relationships between these components. Such a diagram is

called a "Linear graph" whose name depends on the kind of physical system

we deal with. This means that it may be called a network, a net, a circuit, a

graph, a diagram, a structure, and so on.

Instead of indicating the physical structure of a system, we frequently

indicate its mathematical model or its abstract model by a "Linear graph".

Under such a circumstance, a linear graph is referred to as a flow graph, a

signal flow graph, a flow chart, a state diagram, an organization diagram,

and so forth. The generalization of this graph is the “fuzzy graph” and the

most generalization of them is the “chaotic graph”, which applied in many

uncertain circuits, resonance, perturbation theory and many other

applications. More advanced applications using the more complicated

graphs are the chaotic graphs. Generally, a chaotic graph is a geometric

graph that carries many other graphs or physical characters, these geometric

graphs might have similar properties or different. Considers a simple chaotic

graph )( 1
0

0
0 hhh vvG , this graph consists of 1

0
0
0 , hh vv vertices, the geometric edge

1
0 he and smooth chaotic edges 1

ihe , .,...,3,2,1 i See Fig. (I).
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The matrix representation of a geometric simple graph is simple, see Fig (I);

the adjacent and incidence matrices of this chaotic graph are respectively:
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This paper the physical character is presented by density, the density might

be constant everywhere or vary from place to another place, so we will

consider three cases, the first case is when all chaotic edges have the same

physical characters (i.e. fixed density) such that all i
h

i
h

i
h

i
h eeee ,...,, 210

,

 ,....,3,2,1i , has fixed density; for example the color of a plant leaves is a

perfect green, or magnetic field waves have the same velocity, and the

second case is when  chaotic edges have various densities such that 1
0he

represent degree 1 of green color, i
he1

1
represent degree 2 of green

color,…and so on. The third case when even each chaotic level has various

densities. We will denote the degree of each area on the chaotic graph by
pqd

, where p denotes levels of chaotic graph, while qdenotes different areas

on each level of chaotic graph,
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When the density is constant on all chaotic graph levels, it is easily to find

its adjacent and incidence matrices, because the adjacent and incidence

matrices are a special case from the general case when the density is

different, the density of each chaotic level is unit and the same for other

chaotic levels, so this implies that dd pq  and dtakes any real value, since

p & q are both constant, so its adjacent and incidence matrices are

respectively:
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In the case of unique and constant density for each level of chaotic graph

and different to other chaotic levels, qis fixed since the density on each

chaotic graph level is unique and unit, but it is different to the other chaotic

edges, so ,,...,2,1,0 p
ppq dd  , .,...,3,2,1,0 p the adjacent and

incidence matrices representing this type of chaotic graph are respectively:


















hh

hh

h

pdpd

pdpdGA
)...012()...012(

)...012()...012(

01

10
)( ,


















h

h

h

pd

pdGI
)...012(

)...012(

1

1
)( .

In the case of different density for each area in each chaotic graph, we

denote density by
pqd ,  ,...,3,2,1,0p , ,,...,3,2,1 q p & q are as before.

It’s adjacent and incidence matrices are respectively`:
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1. Folding simple chaotic graphs with density variation

There are three fundamental types of folding of any graph, especially
chaotic graphs:

 Topological folding, this type of folding folds the graph into its self,
so it reduce the distance of the graph.

 The other type concerns with folding of a vortex to a vortex of
geometric graph.

 The last type of folding is folding chaotic edges and geometric edge
into each other.

1.1 Topological Folding

Generally topological folding can be defined as:

Let GGF : be a map between any two graphs G and G (not

necessarily to be simple) such that if GvfufGvu  ))(),((,),( ; then f is

called a "topological folding" of G and G provided that

).,())(),(( vudvfufd 

So we can generalise this to chaotic graph as:

If GGF : be a map between any two chaotic graphs hG and hG (not

necessarily to be simple) such that if
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i
ih GvfvfjiGvv   ))(),((,..,2,1,0,,),( 11 ; then f is called a

"topological folding" of hG and hG provided that

).,())(),(( 11   i
ih

i
ih

i
ih

i
ih vvdvfvfd

For this type of folding there are two types of folding as follows:

 The first type of folding is restricted on the geometric graph only,

but not on the chaotic edges, so the end limit of successive folding

sequence is a geometric vertex overlapped by infinitely chaotic

edges (i.e. no geometric loop, semi multiple graph) and each chaotic

edge keeps its own density as before folding, while the geometric

edge changed by folding into one vertex with higher density

whatever if the density is constant or varies on the geometric edge,

in all cases the density will increase. (See figure (1.1.1)).
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chaotics
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chaotics chaotics

1f 2f f

)()()()( 21 21 chaoticnullGSimpleGSimpleGSimpleG h
f

h
f

h
f

h  

)1.1.1(Figure

The incidence matrix representing the original chaotic graph hG is as

follows hI :
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While the incidence matrix representing the chaotic graph

hG , induces from

the end limit of successive folding sequence of the original simple chaotic

graph hG is I as follows


.

The second type of topological folding is to fold both the geometric and the

chaotic edges, in this case the end limit of successive folding is one vertex

has greater density with no chaotic edges (i.e. null graph), so the density has

increased more than in the previous case, so if we want to increase rate of

density, it is preferred to choose this kind of folding  rather than the

previous folding, because the rate of density increases each time we fold a

chaotic edge, not only when we fold the geometric edge (i.e. more density,

less distance for the graph). See figure (1.1.2).
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incidence matrix representing the original chaotic simple graph hG is hI :
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And the incidence matrix representing the chaotic graph

hG induces from

the end limit of successive folding sequence of the original simple chaotic

graph hG is I as follows


.

Since the final graph resulted from folding is the null graph, according to

this the matrix is incidence matrix representing null graph is the zero matrix,

but this should be corrected, because the incidence matrix is a matrix that

dimension mn , where n is number of vertices and m is number of

edges, and since the null graph has no edges, so it cannot have a matrix that

dimension of 01 and this is the reason of having  matrix instead of

zero matrix.

Theorem (1.1.1)

The end limit of topological folding to the geometric graph and chaotic

edges is the null graph with great density and the incidence matrix

representing this graph is the  matrix.

Proof:
Consider the chaotic graph with density variation hG , which consists of the

geometric edge 1
0he and the chaotic edges  ,...3,2,1,1 ieih
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Let hh GGf : be a topological folding for the geometric edge 1
0he

and chaotic edges  ,...3,2,1,1 ieih , such that:

hnnhn
n

hhhhhh GGfGGfGGfGGf  
)(lim,.....,:,:,: )1(32321211

Each folding reduce the length of the graph and increase its density, and

each time we repeat the process, the graph is reduced more and the density

increases more than before, until we reach the end limit of folding the

geometric edge and all chaotic edges and both vertices folded on each other,

so we end up with one vertex has greater density than before and this

exactly the null graph, see figure (1.1.2).
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1.1. The folding of vertex into another vertex

The folding of a vertex into another vertex of a geometric graph is a loop

carries density characteristics on each chaotic level; this does not induce

folding of all chaotic edges, because it does not reduce the length of the

graph it only concerns folding a vertex into another vertex. Moreover, it

does not effect on the density character.

When the chaotic graph has fixed density everywhere, the folding does not

make any change to the density value, for example supposethat the chaotic

graph density is constant everywhere on the graph and equal to ( ad  ),

where ( a ) is a constant, her chaotic graph changes into loops, and each loop

has density equal to a , sothe density still fixed does not change over all the

loops. See Fig. (1.2.1).
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0v 1v

a a a
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The incidence matric representing the original chaotic graph hG is hI :
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While the incidence matrix representing chaotic graph

hG , induces from

folding a vertex into another vertex is I as follows:

.
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 h
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In the case of the geometric edge and each chaotic edges have fixed density

and varies to the next edge, the same result obtained, the folding does not

make any changes on the chaotic graph, see figure (1.2.2)
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The incidence matrix representing the original chaotic graph hG and the

chaotic graph


hG induced from folding a vertex into another vertex are

respectively II h , :
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The same result obtained for the case when the density varies over each

edge on the graph, for example suppose that each chaotic level have three

different densities, so each chaotic level is divided by three densities, the

densities are as follows:

{( cdbdad  020100 ,, ), fdeddd  121101 ,, ), (

idhdgd  222120 ,, )}, her (d not equal q). See Fig (1.2.3).
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Result (1.2.1)

The folding of a vertex into another vertex for chaotic graphs having density

character does not effect on the density, it only changes the shape of the

graph into loops, see figure (1.2.3).

1.2. The folding of all chaotic edges and the geometric edge into their
self with fixing all the vertices:

The folding of chaotic edges is different to the folding of a vertex into

another vertex, folding chaotic edges with fixed vertices  does not effect on
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the length of the graph, moreover; folding of chaotic edges effects on the

shape of graph and on density of each level, discussion is below.

 Firstly; folding chaotic edges having fixed density increases the

density, suppose the density is equal to a and constant everywhere

on the graph, we deduce that the density increases, since the density

is always positive, so the density on the resulting chaotic edge is

bigger than the density on both chaotic edges before folding and

suppose the resulting density from first folding is equal to a , ana

represent the density on the resulting  chaotic edge from the 2nd

folding. We can deduce that ( aaa  ). See Fig. (1.3.1).
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1f 2f
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a a aa

0v
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folding

aa

)1.3.1.(Fig

 Folding chaotic edges having fixed density on each chaotic level and

vary from level into another level increases density too, the same

discussion used in the point above, because when we fold a chaotic

edge into another chaotic edge, the total density on every folded

chaotic edge is bigger than the density on both chaotic edges before
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folding. See figure (1.3.2), we can see that ( amtcbm &,&  ),

where ( cba  ), in this case the density increases too.
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1f 2f

folding

a a

0v

1v
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b c m t
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 Folding chaotic edges having density variation on each chaotic level

and vary from level into another level increases density too, the

same discussion used in the points above.

See figure (1.3.3) where ( nbyhaud&gnech &,&,,&  ), (

ynb  ), ( eca  ), and ( gdb  ).
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So the incidence matrix for original chaotic graph hG and the final folded

graph are as follows respectively:
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Result (1.3.1)

Folding all chaotic edges on the geometric graph of a simple chaotic graph

changes the chaotic graph into a simple graph and it increases their densities

as well.

RESULTS

 Folding a simple chaotic graph with density variation topologically

increase the density of the graph and reduce the length of the graph

too, moreover the end limit of successive topological folding

sequence to the whole graph is the null graph and this an effective

method of increasing density character.

 Folding a vertex into another vertex of any simple chaotic graph

have density character is a loop with multiple of chaotic loops (i.e.

results multiple graph) carries density characteristics, consider any

chaotic simple graph with density characters hG , then the end limit of

successive folding their vertices on each other is a geometric vertex

overlapped on by different chaotic loops and each loop has its own

density characters.

 The folding of all density characters into their selves does not

necessarily induce folding of the geometric graph. As it is not
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necessarily mean folding the vertices and it increases the rate of

density too, but not effected like the topological folding.

 The limit of topological folding for the whole chaotic graph induces

the same result of folding all chaotic levels followed by a topological

folding to the geometric edge, which gives the null graph with great

density, see figure (1.4.1).

folding

1f 2f
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1v

0v

0v
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1v
1v

)1.4.1.(Fig

folding

3f

0v0v

1v

f

folding

 Folding a vertex into another vertex of simple chaotic graph is a

multiple chaotic graph.

 Folding all chaotic edges on the geometric graph changes the chaotic

graph into a simple graph.

CONCLUSION
This paper discussed the idea of chaotic graph with density variation; the

incidence and adjacency matrix were obtained. The folding of simple

chaotic graph with density variation was discussed; three types of folding

were studied, topological folding, folding vertices on each other and chaotic
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edges on the geometric edge. The topological folding increases the density

of graph and reduces the length of the graph. The limit of successive folding

a vertex into another vertex is a geometric vertex overlapped on by different

chaotic loops and each loop has its own density characters, while folding

chaotic edges induces a geometric graph with their basic edges, and we

deduce that density increases.

As a future study, we can extend the idea of folding to the multiple graphs,

which is a more complicated. Another idea can be studied is "unfolding",

which is the inverse process of this type of folding.

APPLICATIONS

 Folding a plant leaves, most of plant leaves have variation of green

color, according to this chaotic graphs can present the variation of

green color of the leaves according to the density character.

 Folding a balloon, the density of the balloon color increase, while

the length ofthe balloon decrease.

 An effective example of chaotic graph with density variations is the

nerve system human body such that the nerve system in the body

carries many different signals a very such a different signal

represents a 1-chaotic graph, where the signals are different and

depends on the mission it carries.

 The perturbation of magnetic field waves and the resonance of the

waves are the chaotic graphs, since every single wave of magnetic

field has different wavelength and speeds, and the wave length

varies on the periodic time.
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