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ABSTRACT 

This paper addresses challenges associated with the study of nonlinear partial differential 

equations. Various methods have been utilized for the analytical resolution of these 

equations. In this discussion, we implement the auxiliary equation method, specifically 

using the auxiliary equation (φ′(ξ)) ² =aφ²(ξ)+bφ⁴(ξ)+cφ⁶(ξ), to derive the exact traveling 

wave solutions for two advanced nonlinear Schrödinger equations. 
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1. INTRODUCTION 

Partial differential equations (PDEs) are foundational in describing a myriad 

of phenomena across various fields such Templates as physics and 

engineering. These equations provide a mathematical framework for 

understanding dynamics such as heat flow in physics; wave propagation in 

optics; and population modeling in ecology, where PDEs have notably 

governed theoretical developments [1,2]. Since the second half of the 19th 

century, the investigation into PDEs has attracted substantial attention from 

mathematicians. Although the study of nonlinear PDEs dates back centuries, 

there have been significant advancements in the latter half of the 20th 

century, particularly driven by the need to understand nonlinear wave 

propagation phenomena [3]. Traveling wave solutions—permanent form 

solutions that travel at a constant velocity—are particularly crucial in the 

sciences and engineering for resolving nonlinear PDEs. 
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Over the past several decades, numerous effective techniques have been 

developed for deriving precise solutions, including methods like the inverse 

scattering transform, Hirota's method [4], truncated Painlevé expansion [5], 

Bäcklund transformation, the exp-function method [6], the simplest 

equation method [7], the Weierstrass elliptic function method [8-9], and the 

Jacobi elliptic function method. This paper aims to leverage the auxiliary 

equation method and its extended form to accurately solve for traveling 

wave solutions in two complex nonlinear Schrödinger equations. 

2.THE ADVANCED AUXILIARYBEQUATION 

TECHNIQUE   

For a specified nonlinear partial differential equation (NLPDE) with 

independent variables. (𝑥, 𝑡) and dependent variable 𝑢: 

             𝐻(𝑢, 𝑢𝑥 , 𝑢𝑡, 𝑢𝑥𝑥, 𝑢𝑡𝑡 , . . . ) = 0,                                               (1) 
 

Where H is a polynomial in u and in its partial derivatives. Using the 

traveling wave transformation  

              𝑢(𝑥, 𝑡)  =  𝑢(𝜉)                𝜉 =  𝑘(𝑥 −  𝜔𝑡),                         (2) 

where k and 𝜔 are constants, to reduce Eq. (1) to the following nonlinear 

ODE: 

                𝐺(𝑢, 𝑢′, 𝑢′′, . . . )  =  0,                                                           (3) 

Where G is a polynomial in 𝑢(𝜉) and its total derivatives, where ′ =  
𝑑

𝑑𝜉
. 

We assume that Eq. (3) has the formal solution  

                           𝑢(𝜉)  =  𝐹(𝜙(𝜉)),                                                (4) 
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where F is a suitable variable transformation, and 𝜙(𝜉) is the solution of the 

first order ODE: 

     (𝜙′(𝜉))2  =  𝑐0  +  𝑐2𝜙2(𝜉)  + 𝑐4𝜙4(𝜉)  + 𝑐6𝜙6(𝜉) ,                (5) 

Where 𝑐𝑖   (𝑖 = 0, 2, 4, 6 )  are arbitrary constants to be determined. 

Equation (5) has the solutions  

                          𝜙(𝜉)  =  
1

2
[−

𝑐4

𝑐6
(1 ± 𝑓(𝜉)]

1

2
,                                    (6) 

The functions 𝑓(𝜉)  given by (6) have twelve forms as follows: 

(1) If 𝑐0 =  
𝑐4

3(𝑚2−1)

32𝑐6
2𝑚2 ,        𝑐2 =  

𝑐4
2(𝑚2−1)

16𝑐6𝑚2 ,       𝑐6 > 0,  then 

       𝑓(𝜉) = 𝑠𝑛(𝜌𝜉).  Or   𝑓(𝜉) =
1

𝑚 𝑠𝑛 (𝜌𝜉)
,                                  (7) 

where 𝜌 =
𝑐4

2𝑚
√

1

𝑐6
. 

(2) If  𝑐0 =  
𝑐4

3(1−𝑚2)

32𝑐6
2 ,        𝑐2 =  

𝑐4
2(5−𝑚2)

16𝑐6
,       𝑐6 > 0,  then 

 

      𝑓(𝜉) = 𝑚 𝑠𝑛(𝜌𝜉).  Or   𝑓(𝜉) =
1

𝑠𝑛 (𝜌𝜉)
,                                   (8) 

where 𝜌 =
𝑐4

2
√

1

𝑐6
. 

(3) If  𝑐0 =  
𝑐4

3

32𝑚2𝑐6
2,        𝑐2 =  

𝑐4
2(4𝑚2+1)

16𝑐6𝑚2 ,       𝑐6 < 0,  then 

𝑓(𝜉) = 𝑐𝑛(𝜌𝜉).  Or   𝑓(𝜉) =
√1−𝑚2𝑠𝑛(𝜌𝜉)

𝑑𝑛 (𝜌𝜉)
,                           (9) 

where 𝜌 =
−𝑐4

2𝑚
√

−1

𝑐6
. 
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(4)  If 𝑐0 =  
𝑐4

3𝑚2

32𝑐6
2(𝑚2−1)

,        𝑐2 =  
𝑐4

2(5𝑚2−4)

16𝑐6(𝑚2−1)
,       𝑐6 < 0,  then 

        𝑓(𝜉) =
𝑑𝑛(𝜌𝜉)

√1−𝑚2
         or                   f(𝜉) =

1

𝑑𝑛 (𝜌𝜉)
,               (10) 

where 𝜌 =
𝑐4

2
√

1

𝑐6(𝑚2−1)
. 

(5) If 𝑐0 =  
𝑐4

3

32𝑐6
2(1−𝑚2)

,        𝑐2 =  
𝑐4

2(4𝑚2−5)

16𝑐6(𝑚2−1)
,       𝑐6 > 0,  then 

            f(𝜉) =
1

𝑐𝑛 (𝜌𝜉)
,         or f (𝜉) =

𝑑𝑛(𝜌𝜉)

√1−𝑚2𝑠𝑛(𝜌𝜉)
                      (11) 

where 𝜌 =
𝑐4

2
√

1

𝑐6(1−𝑚2)
. 

 

(6) If 𝑐0 =  
𝑚2𝑐4

3

32𝑐6
2 ,        𝑐2 =  

𝑐4
2(𝑚2+4−)

16𝑐6
,       𝑐6 < 0,  then 

         f(𝜉) = 𝑑𝑛(𝜌𝜉).     Or 𝑓(𝜉) =
√1−𝑚2

𝑑𝑛(𝜌𝜉)
,                                    (12) 

where 𝜌 = −
𝑐4

2
√

−1

𝑐6
. 

3.THE ADVANCED NONLINEAR SCHRODINGER 

EQUATION 

We seek solutions for the equation presented below 

𝑞𝑧 = 𝑖𝛼1𝑞𝑡𝑡 + 𝑖𝛼2|𝑞|2 + 𝛼3𝑞𝑡𝑡𝑡 + 𝛼4(𝑞|𝑞|2)𝑡 + 𝛼5𝑞(|𝑞|2)𝑡,        (13) 

Eq. (13) can be rephrased as: 

                     𝑞(𝑧, 𝑡) = 𝑢(𝜉)𝑒[𝑖(𝑘𝑧+𝑤𝑡)],     𝜉 = 𝑡 + 𝐶𝑧 ,                    (14)    

where   𝑢(𝜉) is a function of 𝜉 while 𝑘, 𝜔 𝑎𝑛𝑑 𝐶 are nonzero constants. 
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By substituting Equation (14) into Equation (13) we have the following 

result: 

Im : (𝛼1 + 3𝜔𝛼3)𝑢′′ − (𝛼3𝜔3 + 𝛼1𝜔2 + 𝑘)𝑢 + (𝛼2 + 𝛼4𝜔)𝑢3 = 0,  (15) 

Re : 𝛼3𝑢′′′ − (2𝛼1𝜔 + 3𝛼3𝜔2 + 𝐶)𝑢′ + (3𝛼4 + 2𝛼5)𝑢2𝑢′ = 0,           (16) 

Integrating Eq. (16) we obtain  

      𝛼3𝑢′′ − (2𝛼1𝜔 + 3𝛼3𝜔2 + 𝐶)𝑢 +
1

3
(3𝛼4 + 2𝛼5)𝑢3 = 0.           (17)  

The necessary and sufficient condition for both Eqs. (14) and (17) is the 

relation as follows: 

                             𝜔 =
3𝛼2𝛼3−𝛼1(3𝛼4+2𝛼5)

6𝛼3(𝛼4+𝛼5)
,                                         (18) 

               𝑘 = 8𝛼3𝜔3 + 8𝛼1𝜔2 +
2𝛼1

2+3𝛼3𝐶

𝛼3
𝜔 +

𝛼1

𝛼3
.                          (19) 

For simplicity, Eq. (17) can be written as: 

                 𝑢′′(𝜉) + 𝑘1𝑢(𝜉) + 𝑘3𝑢3(𝜉) = 0,                                            (20) 

Where  

             𝑘1 = −
2𝛼1𝜔+3𝛼3𝜔2+𝐶

𝛼3
,                  𝑘3 =

3𝛼4+2𝛼5

3𝛼3
.                         (21) 

By balancing between 𝑢′′ 𝑤𝑖𝑡ℎ 𝑢3 in (20) we get  

                    𝑢(𝜉) = 𝑎0 + 𝑎1𝜙(𝜉) + 𝑎2𝜙2(𝜉),                                        (22) 

where 𝑎0, 𝑎1 𝑎𝑛𝑑 𝑎2 are constants that need to be determined. 

Substituting Equation (22) into Equation (20) results a system of algebraic 

equations: 

𝜙6 ∶  𝑎2
3𝑘3 + 8𝑐𝑎2 = 0, 
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𝜙5 ∶  3𝑎1𝑎2
2𝑘3 + 3𝑐𝑎1 = 0, 

𝜙4 ∶  3𝑎0𝑎2
2𝑘3 + 3𝑎1𝑎2

2𝑘3 + 6𝑏𝑎2 = 0, 

𝜙3 ∶  6𝑎0𝑎1𝑎2
2𝑘3 + 𝑎1

3𝑘3 + 2𝑏𝑎1 = 0, 

𝜙2 ∶  3𝑎0𝑎2
2𝑘3 + 3𝑎0𝑎2

2𝑘3 + 4𝑎𝑎2 + 𝑎2𝑘1 = 0, 

𝜙 ∶  3𝑎0𝑎2
2𝑘3 + 𝑎𝑎1 + 𝑎1𝑘1 = 0, 

𝜙0 ∶  𝑎0
2𝑘3 + 𝑎0𝑘1 + 6𝑏𝑎2 = 0, 

By solving the equations with Maple, the following results are obtained: 

Result 1: 

𝑎0 = ±√−
𝑘1

𝑘2
,      𝑎1 = 0,   𝑎2 = ±√−

8𝑐

𝑘3
,       𝑎 =

1

2
𝑘1, 𝑏 = ±√2𝑐𝑘1,   (23)    

From (22) and (23), we deduce the optical Soliton solutions as follows: 

𝑞1(𝜉) = ±√−
𝑘1

𝑘3
(1 −

𝑠𝑒𝑐ℎ2(𝜉√
1

2
𝑘1)

1−
1

4
(1±𝑡𝑎𝑛𝑠ℎ(𝜉√

1

2
𝑘1))2

) 𝑒[𝑖(𝑘𝑧+𝜔𝑡)],                                 

(24) 

𝑞2(𝜉) = ±√−
𝑘1

𝑘3
(1 +

𝑐𝑠𝑐ℎ2(𝜉√
1

2
𝑘1)

1−
1

4
(1±𝑐𝑜𝑡ℎ(𝜉√

1

2
𝑘1)2

) 𝑒[𝑖(𝑘𝑧+𝜔𝑡)],                               

(25) 

𝑞3(𝜉) = ±√−
𝑘1

𝑘3
(1 −

𝑠𝑒𝑐ℎ2(𝜉√
1

2
𝑘1)

1−
1

4
(1±𝑡𝑎𝑛𝑠ℎ(𝜉√

1

2
𝑘1))

) 𝑒[𝑖(𝑘𝑧+𝜔𝑡)],                               

(26) 
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𝑞4(𝜉) = ±√−
𝑘1

𝑘3
(1 +

𝑐𝑠𝑐ℎ2(𝜉√
1

2
𝑘1)

1−
1

4
(1±𝑐𝑜𝑡ℎ(𝜉√

1

2
𝑘1)

) 𝑒[𝑖(𝑘𝑧+𝜔𝑡)]    ,                          (27) 

𝑞5(𝜉) = ±√−
𝑘1

𝑘3
 𝑡𝑎𝑛ℎ(𝜉√

1

2
𝑘1)𝑒[𝑖(𝑘𝑧+𝜔𝑡)]    ,                                          (28) 

𝑞6(𝜉) = ±√−
𝑘1

𝑘3
 𝑐𝑜𝑡ℎ(𝜉√

1

2
𝑘1)𝑒[𝑖(𝑘𝑧+𝜔𝑡)]    ,                                           (29) 

𝑞7(𝜉) = ±√−
𝑘1

𝑘3
 (1 +  

16√2𝑐𝑘1

𝑒𝑥𝑝(±𝜉√2𝑘1)−8√2𝑐𝑘1
)𝑒[𝑖(𝑘𝑧+𝜔𝑡)]    ,                        (30) 

Result 2: 

𝑎 = −
1

4
𝑘1,   𝑏 = 0, 𝑎0 = 0, 𝑎1 = 0, 𝑎2 = ±√−

8𝑐

𝑘3
 ,                                 

(31) 

In this result, we deduce the optical Soliton solutions as follows: 

    𝑞8(𝜉) = ± (
8𝑘1√−

2𝑐

𝑘3
𝑒𝑥𝑝(±𝜉√−𝑘1)

1+16𝑘1𝑐𝑒𝑥𝑝(𝜉2√−𝑘1)
) 𝑒[𝑖(𝑘𝑧+𝜔𝑡)],                                       (32) 

4. CONCLUSION 

The auxiliary equation method was employed to derive exact traveling wave 

solutions for higher order nonlinear Schrodinger equations. The solutions 

achieved via this method include three distinct: hyperbolic, trigonometric 

and rational solutions. These solutions were verified using Maple 18 by 

substituting them back into the original equations. 
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