
Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

60

SECURE PROGRAMMING PRACTICES

AND OPEN-SOURCE SYSTEMS

(EMPIRICAL INVESTIGATION)

Saleh M. Alnaeli
1
*, Salah Alhadi Gbeg

2
, Salah A. Jowan

2
, Mahmood Saad Shertil

 3

1
Computer Science Dept., University of Wisconsin, Math, Stat, Menomonie, WI, 54751

2
Computer Department, Faculty of Science, Al-Asmarya Islamic University, Zliten, Libya

3
 Computer Department, Faculty of Science, Elmergib University, Alkhoms, Libya

* Corresponding author: alnaelis@uwstout.edu

ABSTRACT

In the era of Open-Source Systems (OSS), security is one of the most important issues that

have a direct impact on the reliability of software systems. Security can significantly be

affected by the way programmers write their code and their level of proficiency when it

comes to secure programming practices. In many problem domains, open-source systems

are written by participants with sufficient experience in their fields. However, it is not

unusual for some of those participants to have a limited background in secure programming

practices. A study that examines the presence, prevalence, and distribution of code

vulnerabilities in scientificOpen-Source systems is presented. This empirical investigation

statically analyzes three systemsdeveloped in C and C++ languages comprising over three

million lines of source code. The study aimed to provide empirical evidence that shows

some of the common vulnerabilities that are introduced to the open-source systems during

the implementation phase. The findings are meant to be used for designing proper training

courses and enhancing the academic computing curriculum. A cloud-based analysis tool

developed by a team from the University of Wisconsin is used in this study. The findings

confirm the presence and show the distribution of some vulnerabilities in the code

introduced by programmers confirming the need for proper relevant training and education.

Keywords:secure programming, open-source systems, cloud computing, static analysis,

vulnerabilities, unsafe functions

1. INTRODUCTION

With the exponential increase of the number of software systems that are

launched as open-source systems by communities from different problem

domains [1-7], security tops the issues that have gained research

communities in both industry and academia. Software vulnerabilities are

weak points in software systems that can maliciously be exploited by

hackers. Most of the source vulnerabilities usually occur during the

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

61

implementation (coding) phase. These vulnerabilities are the result of many

different factors. One well-known factor is the way programmers write their

code with the presence of a lack of Focus on security standards and good

practices. Writing source code without being well prepared and able to

follow the secure programming practices will most likely lead to

weaknesses in the source code which are often derived from poor coding

behaviors, habits, and not following policies in place. Hackers usually focus

their efforts on finding these weaknesses and exploiting them, often to their

benefit within whatever context.

For this reason, many software vendors and complier designers have

recommended that programs be trained to follow secure programming

practices [8]. In fact, some programming language designers have put a

nontrivial effort to improve their libraries and, in some cases, banning some

vulnerable functions (e.g., C string unsafe functions). The question that is

usually being asked by Open-source software communities is “Do those

programmers that work with OSS follow these secure programming

standards and practices?”. Many studies have suggested and recommended

different approaches [7,8]. In this study, authors have teamed up with a

research group from The University of Wisconsin-Stout that have been

working on this problem and are well-known to the research community to

empirically evaluate a cloud-based tool that uses static analysis to detect and

visualize some of the source code vulnerabilities that can negatively impact

the software quality and security [6-8]. Additionally, our goal to uncover

some relevant trends from a software engineering perspective regarding how

people from the scientific community write the code. Do they follow

security and good practices standards? Three Open-source systems are

analyzed in this investigation chosen carefully and commonly used by the

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

62

scientific computing domain.The work provides insights and eye-opening

statistics about open-source development practices concerning coding

security and vulnerability. We believe that the work will also help show the

importance of maintaining a high level of security on those systems and

how to accomplish that using the cloud-based tool that is being used in this

investigation. [6, 7].

In this empirical investigation, several metrics are used chosen among some

known vulnerabilities [9-12]. Mainly, the study will be conducted within

the context of the following three research questions:

Q1: Do open-source programmers follow secure programming practices?

Q2:What are the common insecure patterns found in the analyzed system?

Q3: What is the distribution of the insecure patterns, used in this study,

found in the studied systems?

This is an empirical investigation which means analysis is completely

conducted at the source code level on an actual source code. The source

code is automatically extracted from the software repositories (GitHub).

The source undergoes some transformations and then parsed using the

cloud-based tool developed by a research team from the University of

Wisconsin.

The remainder of this article is organized as follows. Section 2 presents a

brief literature review. Section 3 describes the methodology followed in this

empirical investigation and relevant information. Section 4 introduces the

design of the study, evaluation, and presents findings and uncovered trends

in the studied systems. It also discusses the results and the facts revealed by

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

63

the investigation. The limitations of the study and threats to validity are

discussed in section 5, andsection 6 is the conclusions of the study.

2. LITERATURE REVIEW

In this study, Open-source systems from scientific problem domains are

considered and we intend to support the quality, reliability, and security of

existing source code. Additionally, we aim to provide some insights and

facts for the computer science and relevant fields programs to improve their

programming and software engineering curriculum. Currently, a

substantial percentage of the scientific software systems in both the

academia and enterprise market use open-source software models. Clearly,

this makes the development process easier for both developers and third-

party vendors and institutions. However, it poses some risks and exposes

some potential vulnerabilities as the source code is accessible by everyone

including attackers, and programming participants tend to be very proficient

in their fields, but some could lack sufficient secure programming skills.

Unfortunately, if vulnerabilities or flaws are found by attackers, they will

use them to cause harm to the software system in one way or another

depending on the sensitivity of the systems and services provided by those

victim systems [13].

The source code vulnerabilities involve complex or poorly written code

introducing holes that attackers can use to conduct malicious activities lead

to exposing sensitive data, interrupting service, or damaging the attacked

software system.

While there are multiple reasons and ways when it comes to introducing

vulnerabilities to the open-source software systems [7-13], our discussion is

within the context of using some of the well-known insecure patterns that

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

64

are used by unprepared and well-trained programmers (from secure

programming perspectives) that includes unsafe C/C++ functions,

unproperly handled potential divide by zero operations, dynamic memory

accessed after deleting the designed memory, and unsafe implicit type

casting (e.g., assigning float values to integer variables).

The bulk of previous research on this topic has focused on detecting

different vulnerabilities as they are being reported by computing

communities and end-users [7-13]. Approaches varied from static analysis

to ad hoc techniques. However, the work presented here differs from

previous work on scientific open-source systems in that we conduct an

empirical study of source code vulnerabilities at the source code level and

all the potential challenges with a minimum level of false-negative and

false-positive cases. Additionally, the cloud-based tool used in this study

makes it easier to extract the entire large-scale repositories of the analyzed

systems directly from the repositories servers and transform all the source

files code into an XML format that would allow the static analysis to be

more practical and accurate, and extremely fast [8, 14]. Finding are

visualized so that they are more readable and easier to comprehend. The

tool srcML is used to convert code to XML rapidly [14]. srcML is able to

markup source code with XML which allows for intelligent searching of

known insecure and vulnerable patterns in codebases.

Previous studies of millions of lines of code were conducted, only detecting

unsafe function calls that are considered as one of the most dangerous

vulnerable function that has previously been exploited by attackers [7-11].

Alnaeli et al. [7, 8] have been actively researching and developing

techniques to help developers detect unsafe function calls. Their findings

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

65

showed that the number of unsafe functions tends to rise over time which

suggests a degrading of safe security practices [7, 8]. However, in this

investigation, a new cloud-based tool developed by the team that is able to

go beyond the unsafe function calls deduction. The study will be used to

analyze three scientific systems. The tool is built on the cloud and able to

scale safely. The access to the tool was granted as a part of a collaborative

effort between Alasmarya Islamic University and the University of

Wisconsin software teams [8]. The intention of this work is to someday be

used to help establish fluid standards for scientific software developers in

particular and computer science students in general. To the best of our

knowledge, the empirical study presented is the only one of its kind in

Libya, in both academia and industry, to date.

3. METHODOLOGY AND DATA COLLECTION

We now describe the methodology we used to detect the vulnerable patterns

in the studied systems and collect the data for our case study. The

softwaretool used in this studyis discussed first followed by the major

security concerns (metrics). Techniques to determine the presence of the

TABLE I. THE THREE OPEN-SOURCE SYSTEMS USED IN THE STUDY

System Name Scilab LibreCAD DPDK

System Domain

Cross-platform

numerical

computational package

2D CAD

drawing tool

A set of libraries and

drivers for fast packet

processing (Linux)

#Lines of Code 1,167,178 269,864 2,098,533

Source Code Files 6,354 (C/C++, .h) 848 (C/C++, .h) 3,168 (C/C++, .h)

More Information

terms of the GNU

General Public

License (GPL) v2.0.

terms of the

GNU General

Public License

(GPL) v2.0.

terms of the GNU

General Public

License (GPL) v2.0.

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

66

vulnerabilities in the source-code are generally conservative and, in some

situations, label places as having a source-code vulnerability when in

factthere may not be one, or an insecure pattern is being used in a

nonvulnerable manner. This is referred to as a potential vulnerability. The

static analysis required to identify all the actual cases from the potential

causes can be quite expensive. In some cases, it cannot be done by static

analysis and requires some form of dynamic analysis. Here we limit our

detection approach to a static analysis approach.

3.1 THE CLOUD-BASED TOOL USED IN THIS STUDY

We used a cloud-based software analysis tool developed by Alnaeli et al.

[8], to analyze source code files and determine if they contain any source

code vulnerabilities chosen in advance as defined in this section. The tool

retrieves, on the fly, files with C/C++ source-code extensions (i.e., c, cpp,

and h). Then the tool uses the srcML (www.srcML.org) toolkit to parse and

analyze each file [14]. The srcML format wraps the statements and

structures of the source-code syntax with XML elements, allowing tools to

use XML APIs (e.g., XPath) to locate such things as source code blocks and

to analyze expressions. Once in the srcML format, the cloud tool iteratively

finds each source code block and then analyzes the expressions in the block

to find the different vulnerabilities. A count of each vulnerable pattern per

system is recorded. It also records the number of safer replacements found

which can help understand if there are developers who are aware of the

faster replacements to the unsafe ones. The final output is a visualized report

of the findings of each system analysis with one or more types of source

code vulnerabilities.

http://www.srcml.org/

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

67

3.2 THE VULNERABLE CODE PATTERNS USED IN THIS STUDY

The vulnerability analysis cloud-based tool checks for several source code

patterns. These patterns are detected by the tool because of the

vulnerabilities they can pose to a system. Now, we will briefly discuss each

of the different vulnerable patterns used in this investigation. We also

describe how the tool finds and counts each of them along with any

limitations of the approach.

3.2.1 Race Conditions

A major security concern is race conditions [15]. The vulnerability analysis

tool checks for several race conditions under sections of code that run in

parallel. This includes OpenMP parallelized for-loops, std::thread

parallelized functions, and p-thread parallelized functions. All variable

declarations in the parallelized block are collected. Then all variable usages

are gathered. Each variable usage is assessed to determine if a modifying

operation is being applied to the variable.For example, the statement, “x +=

2,” would count as a modifying operation. After a list of modified variables

is complete, each variable is compared to the list of declared variables in the

parallelized block to determine if any were declared outside of the block.

Finally, any modified variables confirmed to be declared outside the block

are marked as potential race conditions.False positives due to reduction,

atomic, locks, critical, and other thread-safety patterns, are ruled out.

3.2.2 Unsafe Functions

Functions that are considered unsafe by the tool are functions that have been

deemed unsafe by the research community [10]. For example, the standard

C library includes the gets() function that is used by programmers for

reading a sequence of characters (c-strings) from the user. The function

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

68

cannot verify the length of the entered string making it possible for the user

to exceed the maximum expected length. As a result, an attacker trying to

write LENGTH + MORE bytes into the designated buffer will always

succeed if newlines were excluded from the data [16]. Therefore, locations

of the memory that are adjacent to the buffer in the memory will most likely

be corrupted. That means an attacker can modify or corrupt data and can

even overflow the stack, leading the program to run into an unexpected

status which causes unpredictable results. Our tool canparse the blocks that

include the calls to unsafe functions semantically to exclude all the function

calls that use wrappers so that the false negatives are significantly

minimized.

3.2.3 Implicit Type Casting

Implicit type casting is detected when data is lost due to typecasting.For

instance, the tool detects a specific case of buffer overflow in which a

stream insertion operator “<<” is used to direct the contents of a stream into

a fixed-size array without any checks on the size of the stream contents [8].

3.2.4Potential Division by Zero

Division by zero can lead to unexpected exceptions, which can be

considered a security vulnerability. The tool analyzes the source code

looking for any operations that involve unsafe division where zero can be a

denominator. The patterns are semantically analyzed as well so that the false

negatives are significantly minimized.

3.2.5 Deallocated Dynamic Memory

Deallocated memory access can allow unauthorized access to data. This

situation is known as dangling pointers or null pointers [17]. For examples,

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

69

if the delete command is used in C/C++ to release a dynamically allocated

memory pointed by a pointer and then the program tries to access the

released memory via the pointer, if not properly, they can be exploited by

attackers who can use it in their favor [15-17].

4. FINDINGS AND DISCUSSION

We now study the distribution of three chosen scientific systems for this

empirical study. Table 1 presents the list of systems examined along with

the number of files, problem domain, and LOCs (Lines of Code) for each of

them. These systems were chosen because they represent a variety of

applications within the scientific domain that are widely used. We have a

strong feeling gained from their popularity in academia and literature that

they represent a good reflection of the types of systems that would undergo

development and are targeted for regular maintenance and evolution

processes in general. Additionally, we believe that the chosen open-source

systems are written and evolved by developers from different relevant

scientific backgrounds and various levels of secure programming and

practices familiarities.

4.1 Design of The Study

Our study focuses on two main aspects regarding source code vulnerabilities

in the open-source systems used in the scientific domain. First, the presence

of vulnerable patterns and unsafe functions in the analyzed system; this

gives a handle of how much open-source systems can be trusted and how

much work needs to be expected to address these vulnerabilities either

manually or using automated tools. This will hopefully motivate the

stakeholders of those systems to hire or adopt adequate techniques to

observe their systems as they are being developed and evolved. Second, we

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

70

examine which vulnerability patterns among the ones used in this study are

most prevalent. We are interested in revealing the distribution of the

inhibitors in the systems. This can play an important role in prioritizing the

refactoring processes that need to be undertaken to address and fix the found

vulnerabilities. For example, the most prevalent one needs to be fixed first

for more effective outcomes.

We propose the following research questions as a more formal definition of

the study.

R1: Do open-source programmers follow secure programming practices (are

source code vulnerabilities found in the studied systems)?

R2:What are the common insecure patterns found in the analyzed system?

R3: What is the distribution of the insecure patterns, used in this study,

found in the studied systems?

Next, we now examine our findings within the context of these research

questions.

4.2 The Detected Vulnerabilities and Their Distribution

We now present and discuss our findings and main observations, along with

some general trends found in the studied systems.

Results collected in this investigation are presented in tables II and III and

visualized in Fig. 1, Fig. 2, and Fig.3 for the studied systems. A count of

how manytimes the considered vulnerable patterns including insecure

TABLE II. THE DISTRIBUTION OF SOURCE CODE VULNERABILITIES DETECTED IN

THE STUDIED SYSTEMS

Vulnerabilities Scilab LibreCAD DPDK

Calls to known Insecure Functions 3,983 456 8,257

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

71

Implicit Type Casting 945 253 815

Memory Access After Deletion 555 172 0

Potential Division by Zero 42 2 15

Race-Condition 0 4 1

Uninitialized Varables 1,570 210 4,082

Total 7,095 1,097 13,170

Fig. 1. Vulnerable Patterns Detected in The Studied System and Their Distribution

functions werefound in each system are shown in the table. Fig.1 shows the

distribution of the vulnerable patterns detected in all the analyzed systems.

The insecure function calls represent the most prevalent vulnerable patterns

among all the patterns used in this study. This is somehow consistent with

the literature and prior studies conducted on systems from different problem

domains [hidden for blind review]. The uninitialized variables come second

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

72

for Scilab and DPDK. However, for the LibreCAD system, the implicit

type casting was the second prevalent vulnerable pattern found by the tool.

Fig. 2 presents the total number of vulnerable patterns (used in this study)

found in each system. The figure shows that the DPDK has the vast

majority followed by Scilab and then LibreCAD. Considering the

difference in the size of the systems, this is expected. But the results in

general address the first research question, R1, confirming that the

developers of these open-source systems are introducing vulnerabilities to

the systems. Detailed distribution is shown in Fig. 3 for each system.

Fig.3 also presents the distribution of the unsafe functions called in each

system individually, besides the other vulnerabilities, shown in different

colors. This information is very important as It can be used to prioritize the

refactoring and fixing tasks that can be conducted to improve the security

and the quality of the source code for the studied systems.

One item of interest in TABLE II. is that Scilab and LibreCAD have a more

serious issue when it comes to dealing with dynamic memory allocation.

That is, the invalid memory access caused by improperly handling the

deleted dynamic memory is 555 for Scilab and 172 in LibreCAD. However,

interestingly, no access to a released pointer was deducted in DPDK. As

Fig. 3 shows that dynamic memory allocation has been used in DPDK, this

indicates that the developers of this system are efficiently able to keep

tracking of the released pointers so that they are not used if the former

locations are released by the program leading to no pointer dangling issues.

This is not quite the case for the other two systems. Again, the numbers

make all the systems vulnerable to attacks if hackers were able to exploit

these vulnerabilities found in the studied systems.

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

73

Although the total numbers were relatively smaller in Libre, the ratio of the

number of lines and number of the detected vulnerability make it not the

most efficient when it comes to the usage of vulnerable patterns used as

metric in this investigation.

Fig. 2. Total Number of Vulnerable Patterns Found in Each System

It is interesting to note that unsafe functions are still being used in the

studied systems even though it is considered a bad programming practice

and their risk is well-known to the research community. We did some spot

inspections and found many cases of these detected unsafely used

confirming our concerns and supporting the aforementioned answers to the

first and second research questions, R1 and R2. Of course, these findings

are somewhat consistent with the literature and prior investigations [7].

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

74

TABLE II. shows that the presence of uninitialized variables is very

significant across all the studied systems. This is something that needs to be

addressed by the admins of the systems as it may impose serious

vulnerabilities that affect the quality of the systems. The code uses a

variable that has not been initialized, leading to unpredictable or unintended

results. In other words, in C/C++ variables are not initialized by default so

they typically contain junk data with the contents of stack memory before

the parent block is invoked. An attacker can control or read these contents

so the presence of uninitialized variables can sometimes indicate a

typographic error in the code [11, 18].

The number of possible race-conditions across all systems was very trivial.

This somehow indicates that the systems are all written sequentially and not

in a multithreaded manner. This is a bad sign when it comes to the ability to

take the advantage of the multicore architecture, however, this beyond the

scope of this investigation. Additionally, the number of statements that have

the potential to lead to division by zero was visible in Scilab and DPDK and

very neglect in LibreCAD.

TABLE II, fig.1, and fig.2 address R2 and R3 and give more details of our

findings on the distribution of detected vulnerable patterns. Additionally,

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

75

Fig. 3. Calls to Insecure functions and Other Vulnerabilities Detected in The System and Their

Distribution for Each System

TABLE II presents the counts of each vulnerable pattern that occur within

each system. The systems have multiple vulnerabilities. As can be seen,

insecure functions’ invocations are by far the most prevalent in all the

studied systems, addressing R2 and R3. Fig 3. shows the distribution of the

calls to unsafe functions. Clearly, the DPDK system has the largest number

followed by Scibal. One reason is that the portion of the code written in C is

large in these two systems.

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

76

4.3 The Safer Replacement and safer use ofUnsafe Functions

We are interested in knowing whether or not the developers of the studied

systems use safe replacements introduced to the C/C++ language. We

believe that this information will give us the ability to explain some of the

other findings and teach us about the demography of the developers, from

experience and proficiency perspectives. We used the tool to detect all of

the safer replacements used in the studied systems. Additionally, we

counted the number of times the unsafe functions have been used in a

careful manner that is less likely to introduce any vulnerability to the system

(preceded with proper wrappers). The attention was to reduce false-positive

cases for more accurate results.

This will give us some insights into how unsafe functions are being used.

Those patterns have not been double counted and are only shown in TABLE

III. Even though the number of cases where unsafe functions were safely

invocated is high in DPDK and Scilab, this is not a good practice from a

software engineering perspective, since safer functions are available. That

is, using the unsafe functions should not be recommended here and this is a

point that can degrade the quality of the source code of these two systems.

The developers of this system should be recommended to take some training

and get exposed to newer and up to date safer replacements. This will allow

them to suggest some refactoring tasks to remove unsafefunctions and

replace them with safer options [10].

TABLE III. SAFER REPLACEMENTS USED IN THE STUDIED SYSTEMS

Vulnerabilities Scilab LibreCAD DPDK

UNSAFEFUNCTIONUSEDSAFELY 213 8 793

SAFER REPLACMENTS 149 34 2,816

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

77

Another interesting observation is that the developers of the studied

systemsseem to have different levels of background in secure programming

practices. This is very evident via the findings shown in TABLE II and III

where both of the numbers of unsafe functions and their replacements are

nontrivial. Additionally, the findings have shown that some of those

programmers who use unsafe functions find their way to manage to use

them in a less harmful way. We did some spot inspections and found

several cases of unsafe function call being used within blocks that have

wrappers making it safer to use the insecure functions. Ideally, developers

should be trained to replace the unsafe functions with safer replacements

and refrain from using the known insecure and vulnerable functions.

DPDK shows better trends when considering the ratio of unsafe functions to

the safer replacements used in the system. This indicates that the developers

of this system have more skills from a security perspective compared to the

other systems. As this observation cannot be generalized, a further

investigation needs to be conducted to see if the unsafe and safe functions

are introduced by different people or the system is being under refactoring

operations that involve replacing the unsafe functions with safer ones.

These trends can be investigated and uncovered if a historical study is

conducted. This is something the authors are considering for a future study.

5. LIMITATIONS AND THREATS TO VALIDITY

For most of the static analysis security tools in the market, it is not unusual

to have a nontrivial number of false-negative (missed vulnerabilities) and

false-positive cases affecting the accuracy of the results [14]. Although we

know that the cloud-based tool used in this study is constantly being

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

78

improved, we still expect it to miss some certain cases or return false

positives, giving inaccurate results [8].

The dead code was not excluded from our study. That is, upon examination

of the detected patterns in the study we found that some of them were part

of dead code, i.e., code that would never be executed. As part of the static

analysis, there was no distinction made in the study between vulnerabilities

found in dead code or active code that might have an impact on the accuracy

of the findings. We believe that the dead code will not impose any risk even

if it contains insecure patterns. In the future, we are planning to refine the

results by excluding the dead code.

6. CONCLUSION AND FUTURE WORK

This study uses a cloud-based tool to empirically examine the usage of

vulnerable patterns in open-source systems from the scientific problem

domain. Three large-scale systems are investigated as a case study for this

empirical study. The analyzed systems are all written in C/C++ languages

and comprising more than three million lines for source code. We found

that the developers of these systems have used different insecure patterns

and functions that, if exploited by the attackers, could cause security issues.

We found that the most vulnerable patterns found in the studied system are

known to be very exploitable but could be avoided. This is evident as some

developers of the studied systems were found to be aware of and using more

secure and safer replacements. As such, more attention needs to be placed

on dealing with and observing how open-source systems develop and evolve

so that they are more secure and reliable. While we cannot completely

generalize this finding to all software systems (across scientific domains)

there is some indication that this is a common trend.

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

79

The recent ubiquity of the open-source development model gives rise to the

need to educate developers and make them more aware of the secure

programming standards and source code vulnerabilities. We echo the

demand for the need to develop standards and idioms that help developers in

avoiding vulnerable patterns. We found the cloud-based tool to be very

helpful and easy to use. It is very scalable and can give results significantly

fast in a readable way. Additionally, we recommend that the tool to be

open-source itself so that more vulnerability checkers are developed and

integrated into the tool. Having this tool as a plugin to C/C++ IDEs will be

a huge asset to the scientific computing community.

ACKNOWLEDGMENT

Software Engineering and Security Research team at The University of

Wisconsin- Stout, and Parkside for giving us access to the Cloud-Based

source code vulnerabilities analysis tool.

REFERENCES

[1] St. Laurent, Andrew M. (2008). “Understanding Open Source and Free Software

Licensing.”, O'Reilly Media. p. 4. ISBN 9780596553951.

[2] Levine, Sheen S.; Prietula, Michael J. (30 December 2013). "Open Collaboration for

Innovation: Principles and Performance". Organization Science. ISSN 1047-7039.

[3] D. Cubranic, K.S. Booth, “Coordinating open-source software development”, IEEE 8th

International Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprises. Stanford CA (16-18 Jun 1999), pp. 61-66

[4] J. J. Heiss.,“The meanings and motivations of open-source communities.”, Aug 2007,

from Oracle,http://www.oracle.com/technetwork/articles/java/opensource-phipps-137190.html.

[5] L. Pascarella, F. Palomba, M. Di Penta, and A. Bacchelli, "How Is Video Game

Development Different from Software Development in Open Source?," 2018

IEEE/ACM 15th International Conference on Mining Software Repositories (MSR),

Gothenburg, 2018, pp. 392-402.

[6] E. Crifasi, S. Pike, Z. Stuedemann, S. M. Alnaeli and Z. Altahat, "Cloud-Based Source

Code Security and Vulnerabilities Analysis Tool for C/C++ Software Systems," 2018

Journal of Applied Science (JAS) Vol. 33 No. 2, December 2020

80

IEEE International Conference on Electro/Information Technology (EIT), Rochester,

MI, 2018, pp. 0651-0654, doi: 10.1109/EIT.2018.8500206.

[7] M. Block, B. Barcaskey, A. Nimmo, S. Alnaeli, I. Gilbert and Z. Altahat, "Scalable

Cloud-Based Tool to Empirically Detect Vulnerable Code Patterns in Large-Scale

System," 2020 IEEE International Conference on Electro Information Technology

(EIT), Chicago, IL, USA, 2020, pp. 588-592, doi: 10.1109/EIT48999.2020.9208325.

[8] D. Wahyudin, A. Schatten, D. Winkler, and S. Biffl, "Aspects of Software Quality

Assurance in Open Source Software Projects: Two Case Studies from Apache Project,"

33rd EUROMICRO Conference on Software Engineering and Advanced Applications

(EUROMICRO 2007), Lubeck, 2007, pp. 229-236, doi:

10.1109/EUROMICRO.2007.19.

[9] Y. Joonseok, R. Duksan, and B. Jongmoon, "Improvingvulnerability prediction

accuracy with Secure Coding Standardviolation measures," in 2016 International

Conference on BigData and Smart Computing (BigComp), 2016, pp. 115-122.

[10] M. Howard. “Security Development Lifecycle (SDL) BannedFunction Calls” [Online].

Available:https://msdn.microsoft.com/en-us/library/bb288454.aspx

[11] Z. Xu and G. Liu, "STACKEEPER: A Static Source Code Analyzer to Detect Stack-

based Uninitialized Use Vulnerabilities," 2018 IEEE 4th International Conference on

Computer and Communications (ICCC), Chengdu, China, 2018, pp. 2180-2184, doi:

10.1109/CompComm.2018.8780675.

[12] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. Arango-Argoty, "Secure Coding

Practices in Java: Challenges and Vulnerabilities," 2018 IEEE/ACM 40th International

Conference on Software Engineering (ICSE), Gothenburg, 2018, pp. 372-383, doi:

10.1145/3180155.3180201.

[13] Gilad David Maayan, “The Dangers of Open-Source Vulnerabilities, and What You

Can Do About It”, Aug 19, 2019, https://securitytoday.com/articles/2019/08/19/

[14] M. L. Collard, M. J. Decker, and J. I. Maletic, "LightweightTransformation and Fact

Extraction with the srcML Toolkit,"presented at the SCAM'11, Williamsburg, VA,

USA, 2011.

[15] C.C. Michael. S. Lavenhar, “Source Code Analysis Tools - Overview,” CISA Cyber

Infrastructure, 2013.

[16] J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw, "ITS4: a static vulnerability scanner

for C and C++ code," in Computer Security Applications, 2000. ACSAC '00. 16th

Annual Conference, 2000, pp. 257-267

[17] L. Dong, W. Dong and L. Chen, "Invalid Pointer Dereferences Detection for CPS

Software Based on Extended Pointer Structures," 2012 IEEE Sixth International

Conference on Software Security and Reliability Companion, Gaithersburg, MD, 2012,

pp. 144-151, doi: 10.1109/SERE-C.2012.30.

[18] The National Institute of Standards and Technology (NIST) National Vulnerability

Database (NVD. “Vulnerability Summary for the Week of September 14, 2020”

[Online]. Available:https://us-cert.cisa.gov/ncas/bulletins/sb20-265

https://msdn.microsoft.com/en-us/library/bb288454.aspx
https://securitytoday.com/articles/2019/08/19/
https://us-cert.cisa.gov/ncas/bulletins/sb20-265

