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ABSTRACT 

Regression is a statistical tool for the investigation of relationships between variables. 

Usually, the investigator seeks to ascertain the casual effect of one variable upon another. 

Regression methods are meant to determine the best functional relationship between a 

dependent variable Y with one or more independent variables X .The earliest form of 

regression was the method of least squares, which was published by Legendre in 1805 and 

by Gauss in 1809. Legendre and Gauss both applied the method to the problem of 

determining, from astronomical observations, the orbits of bodies about the Sun. Gauss 

published a further development of the theory of least squares in 1821.The term 

“regression” was coined by Sir Francis Galton , while studying the linear relationship 

between   heights  of sons and heights of their fathers. 

1. INTRODUCTION 

This paper focuses   on   tools  and  techniques  for  building  regression  

models  using  real data and assessing  their  validity. A key theme 

throughout the research is that it makes sense to base inferences or 

conclusions only on valid models. 

Plots are shown to be an important tool for both building regression models 

and   assessing their validity.  We  shall see that deciding what to plot and 

how each plot  should be interpreted will be a major challenge. In order to 

overcome this challenge  we shall need to understand the mathematical 

properties of the fitted regression  models  and  associated  diagnostic  

procedures. In particular, we shall  carefully study the  properties of  

residuals  in order to understand when patterns in residual plots provide 

direct information   about  model  misspecification  and  when  they  do  not

  

http://en.wikipedia.org/wiki/Method_of_least_squares
http://en.wikipedia.org/wiki/Adrien_Marie_Legendre
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
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This paper is divided into three parts . The first  part contains an 

introduction about the work. In the second part we introduce Pearson’s 

correlation coefficient, properties of regression coefficients and types of 

regression. In the third part we present our conclusions. 

2. REGRESSION ANALYSIS 

In this part we discuss regression which measures the nature and extent of 

correlation.  

2.1  Correlation 

Pearson’s correlation coefficient is one of a number of measures of 

correlation or association. It determines the degree to which a linear 

relationship exists between two variables. 

The statistic computed for the Pearson correlation coefficient is represented 

by the letter r. r is an estimate of  𝜌, which is the correlation between the 

two variables in the underlying population. r  can assume any value within 

the range of  -1 to +1.  The absolute value of r (i.e., |r|)) indicates the 

strength of the relationship between the two variables. As the absolute value 

of r approaches 1, the degree of linear relationship between the variables 

becomes stronger, achieving the maximum when |r|= 1 (i.e., when r equals 

either + 1 or - 1). The closer the absolute value of r is to 1, the more 

accurately a researcher will be able to predict a subject's score on one 

variable from the subject's score on the other variable. The closer the 

absolute value of r is to 0, the weaker the linear relationship is between the 

two variables.  

The sign of r indicates the nature or direction of the linear relationship 

which exists between the two variables. A positive sign indicates a direct 
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linear relationship, whereas a negative sign indicates an indirect (or inverse) 

linear relationship. A direct linear relationship is one in which a change on 

one variable is associated with a change on the other variable in the same 

direction (i.e., an increase on one variable is associated with an increase on 

the other variable, and a decrease on one variable is associated with a 

decrease on the other variable). When there is a direct relationship, subjects 

who have a high score on one variable will have a high score on the other 

variable, and subjects who have a low score on one variable will have a low 

score on the other variable.  

An indirect/inverse relationship is one in which a change on one variable is 

associated with a change on the other variable in the opposite direction (i.e., 

an increase on one variable is associated with a decrease on the other 

variable, and a decrease on one variable is associated with an increase on the 

other variable). When there is an indirect linear relationship, subjects who 

have a high score on one variable will have a low score on the other 

variable, and vice versa. 

The use of the Pearson’s correlation coefficient assumes that a linear 

function best describes the relationship between the two variables. If, 

however, the relationship between the variables is better described by a 

curvilinear function, the value of r computed for a set of data may not 

indicate the actual extent of the relationship between the variables . 

Calculation of Pearson’s correlation coefficient r 

Let (𝑥1, 𝑦1),(𝑥2, 𝑦2)…(𝑥𝑛, 𝑦𝑛) be n paired observations, then Pearson’s 

correlation coefficient is equal to 
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𝑟 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

   

or simply 

𝑟 =

∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1

𝑛
− 𝑥̅𝑦̅

 𝑠𝑥𝑠𝑦
 

 

Where  𝑥̅ =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
  ,   𝑦̅ =

∑ 𝑦𝑖
𝑛
𝑖=1

𝑛
   are  sample means and  

𝑠𝑥 = √
1

𝑛
∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1  ,   𝑠𝑦 =   √
    1    

𝑛
∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1      are standard sample 

deviations. 

If   we use      

𝑥𝑖
` = 𝑥𝑖 − 𝑥̅,    

𝑦𝑖
` = 𝑦𝑖 − 𝑦̅ 

,    then   we  get simplified for Pearson’s correlation coefficient  

𝑟 =
∑ 𝑥𝑖 

′ 𝑦𝑖 
′𝑛

𝑖=1

√∑ 𝑥𝑖
′2𝑛

𝑖=1 √∑ 𝑦𝑖
′2𝑛

𝑖=1

  

2.2  Scatter Diagram 

Let us have pairs of values (𝑥1, 𝑦1) , (𝑥2, 𝑦2)…(𝑥𝑛, 𝑦𝑛). In scatter diagram 

the variable X is shown along the x-axis and the variable Y is shown along 

the y-axis  and all the pairs of values of X and Y are shown by points (or 

dots) on the graph paper. 



Journal of Applied Science(JAS)                                                              Vol. 33 No. 1,  June 2020 

 

 

47 

The scatter diagram of these points reveals the nature and strength of 

correlation between these variable X and Y.    Degrees of correlation 

between two variables are shown on Figure 1. As we can see, when there is 

no correlation, points on the scatter plot are distributed randomly.                                                                                                                                                                     

Also, we observe the following: 

 If the points lie on a straight line rising from lower left to upper right 

,then there is a perfect positive correlation between the variables X 

and Y . If all the points do not lie on a straight line, but their 

tendency is to rise from lower left to upper right then there is a 

positive correlation between the variable X and Y  . In these cases 

the two variables X and Y are in the same direction and the 

association between the variables is direct. 

 If the  movements  of  the variables X and Y are opposite in 

direction and the scatter diagram is a  straight line, the correlation is 

said to be negative, association between the variables is said to be 

indirect. 

A scatter plot of the data like that given in Figure1 should always be drawn 

to obtain an idea of the sort of relationship that exists between two variables  

 (e.g., linear, quadratic, exponential, etc) . 
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Figure 1. The degrees of correlation 

                                                                                                                                                               

Example 1: For the following data draw scatter diagram and calculate 

Pearson’s correlation coefficient. 

 

X  3 5 7 9 11 13 15 

Y 5 8 11 13 15 17 19 
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Figure 2. Scatter plot for given data  

 

First we calculate sample means, sample standard deviations and then 

Pearson’s correlation coefficient  is  equal to 
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We can see that correlation between variables X and Y is very strong. By 

looking at the scatter plot it seems that Y is a linear function of X. It is 

important to note that correlation does not imply causation. Consequently, if 
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there is a strong correlation between two variables , a researcher is not 

justified in concluding that one variable causes the other variable. Although 

it is possible that when a strong correlation exists one variable may, in fact, 

cause the other variable, the information employed in computing the 

Pearson’s correlation coefficient does not allow a researcher to draw such a 

conclusion. This is the case, since extraneous variables which have not been 

taken into account by the researcher can be responsible for the observed 

correlation between the two variables. 

2. 3 Regression 

Regression is typically used to model the relationship between dependent 

variable Y and one or more independent variables X, so that given the 

specific value of X, that is X=x,  we can predict the value of Y. 

Mathematically, the regression of a random variable Y on a random variable 

X is 

E(Y | X = x), 

the expected value of Y when X takes the specific value x . For example, if 

variable X  represents day of the week and variable Y  sales at a given 

company, then the regression of Y on X represents the mean (or average) 

sales on a given day. 

2.3.1 Regression Equation 

The functional relationship of a dependent variable with one or more 

independent variables is called a regression equation: It is also called 

prediction equation (or estimating equation). 

 

 



Journal of Applied Science(JAS)                                                              Vol. 33 No. 1,  June 2020 

 

 

51 

2.3.2  Curve of Regression  

The graph of the regression equation is called the curve of regression: If the 

curve is a straight line; then it is called the line of regression. 

2.3.3 Types  of  Regression 

If there are only two variables under consideration, then the regression is 

called simple regression. For example, in the case of a study of regression 

between heights and age for a group of persons the relationship is linear. If 

there are more than two variables under considerations then the regression is 

called multiple regression. For example, multiple regression can be used to 

model relationship between sugar in blood and weight, age and blood 

pressure of diabetes patients. If the relationship between X and Y is non 

linear, then the regression is curvilinear  regression. For example, volume 

of oil tanker  is a cubic function of its length. In some cases polynomials are 

selected to predict or estimate; which is called polynomial regression. 

2.3.4   Linear Regression Equation of Y on X 

Data  are collected in pairs (𝑥1, 𝑦1) , (𝑥2, 𝑦2)…(𝑥𝑛, 𝑦𝑛), where 1x denotes the 

first value of the so-called X -variable and 1y denotes the first value of the 

so-called Y -variable. The X variable is called the explanatory or predictor 

variable , while the Y -variable is called the response variable or the 

dependent variable.  

The regression of Y on X is linear if 

xxXYE 10)|(    
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Where  the unknown parameters 0 and 1 determine the intercept and the 

slope of a specific straight line, respectively. Suppose that nYYY ,...,, 21   are 

independent realizations of the random variable Y that are observed at the 

values nxxx ,...,, 21 of a random variable X .  If the regression of Y on X is 

linear, then   for  i = 1, 2, …, n 

iiiii exexXYEY  10)|( 
 

Where  ie
 
is the random error in iY and is such that E(e | X) = 0.

 

The random error term is there since there will almost certainly be some 

variation in Y due strictly to random phenomenon that cannot be predicted 

or explained. In other words, all unexplained variation is called random 

error . Thus, the random error term does not depend on, nor does it contain 

any information about Y (otherwise it would be a systematic error). 

 

2.3.5   Assumptions necessary about the regression model 

Throughout this section we shall make the following assumptions: 

1. 𝑌   is related to 𝑥  by the simple linear regression  model  (𝑦𝑖 = 𝛽0 +

𝛽1𝑥𝑖 + 𝐸𝑖). 

2. The errors  𝑒1 ,𝑒2 , … . , 𝑒𝑛  are independent of each other. 

3. The errors 𝑒1, 𝑒2, … . . , 𝑒𝑛 have a common variance 𝜎2 . 

4. The errors are normally distributed with a mean of  0  and variance 𝜎2  , 

that is, ),0(~ 2Ne . 

Methods for checking these four assumptions will be considered in the third 

chapter. In addition , since the regression model is conditional on 𝑥  we can 
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assume that the values  of the predictor variable, (𝑥1, 𝑥2, … , 𝑥𝑛)  are known 

fixed constants 

2.4  Estimating  the population slope and intercept 

Suppose for example that variable X  represents  height and variable Y  

weight of  a person. For a line regression model the mean weight of 

individuals of a given height would be a linear function of that height. In 

practice, we usually have a sample of data instead of the whole population. 

The slope 1 and intercept 0  are unknown, since  these  are the values for 

the whole population. Thus, we wish to use the given data to estimate the 

slope and the intercept. This can be achieved by finding the equation of the 

line which “best” fits our data, that is, choose 𝑏0 and  𝑏1  such that

ii xbby 10
ˆ 

 
is as “close” as possible to  iY . 

Here the notation  iŷ
 
is used to denote the value of the line of best fit in 

order to distinguish it from the observed values of  Y   that is 𝑦𝑖  . We shall 

refer to iŷ  as the i th predicted value or the fitted value of iY . For 

estimating these unknown parameters we will use the method of least 

squares. 

3. THE METHOD OF LEAST SQUARES 

This method of curve fitting was suggested early in the nineteenth century 

by the French mathematician Adrian Legendre. The method of least squares 

assumes that the best fitting line in the curve for which the sum of the 

squares of the vertical distances of the point (x, y) from the line is minimal.   

The Least squares principle for the simple linear regression model is to find 

the estimators 𝑏0 and 𝑏1 such that the sum of the squared distances from 
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actual response 𝑦𝑖 and predicted response 𝑦̂𝑖  = 𝛽𝑜 +  𝛽1𝑥𝑖 reaches the 

minimum among all possible choices of regression coefficients  𝑏𝑜 and  𝑏1,  

we  are  searching  for values which  minimize  the sum: 

S = ∑[yi 

n

𝑖=1

− (βo +  β1xi)]² 

The motivation behind the least squares method is to find parameter 

estimates by choosing the regression line  that is the most “closest” line to 

all data points (𝑥𝑖 , 𝑦𝑖),  𝑖 = 1, 𝑛     (Figure 3). 

 

Figure 3. Vertical distances  of points from  regression line 

 
Mathematically, the least squares estimates of the simple linear regression 

could be obtained by solving the following system: 

𝜕𝑆

𝜕𝛽0
= 0,     

𝜕𝑆

𝜕𝛽1
= 0                            



Journal of Applied Science(JAS)                                                              Vol. 33 No. 1,  June 2020 

 

 

55 

It is more convenient to solve this system using the fitted linear model: 

𝑦̂𝑖 =  𝛽𝑜
∗ + 𝛽1(𝑥𝑖 −𝑥̅) +  𝜀𝑖  , 

 

where 

𝛽𝑜 =  𝛽𝑜
∗ − 𝛽1𝑥̅ . 

Now sum of squared distances equals to 

𝑆 = ∑[𝑦𝑖 − (𝛽0
∗ + 𝛽1(𝑥𝑖 − 𝑥̅))]

2
𝑛

𝑖=1

                   

 
and we need to solve the following system 

 

Taking the partial derivatives with respect to 𝛽0
∗ and  𝛽1  we  have: 

 

∑[𝑦𝑖

𝑛

𝑖=1

− (𝛽𝑜
∗ +  𝛽1(𝑥𝑖 − 𝑥̅))] = 0 

 

∑[𝑦𝑖

𝑛

𝑖=1

− (𝛽𝑜
∗ + 𝛽1(𝑥𝑖 − 𝑥̅)](𝑥𝑖 − 𝑥̅) = 0 

 

Note that 
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∑ 𝑦𝑖

𝑛

𝑖=1

=   𝑛 𝛽0
∗ +  ∑ 𝛽1

𝑛

𝑖=1

(𝑥𝑖 − 𝑥̅) =    𝑛 𝛽0
∗ 

 

Therefore, we have 

𝑏0
∗ = 𝛽̂0

∗ =  
1

𝑛
∑ 𝑦𝑖 =  𝑦̅

𝑛

𝑖=1

. 

 

Substituting  𝑏0
∗  by  𝑦 ̅   we obtain 

 

∑[𝑦𝑖

𝑛

𝑖=1

− (𝑦̅ + 𝛽1(𝑥𝑖 − 𝑥̅))](𝑥𝑖 − 𝑥̅) = 0 

Now it is easy to see 

𝑏1 =

1

𝑛
∑ (𝑦𝑖 − 𝑦̅)(𝑥𝑖 − 𝑥̅)𝑛

𝑖=1

1

𝑛
∑ (𝑥𝑖

𝑛
𝑖=1 − 𝑥̅)²

=  
𝑆𝑋𝑌

𝑆𝑋𝑋
 

and 

𝑏0  =   𝑏𝑜
∗ -  𝑏1𝑥̅  = 𝑦̅ − 𝑏₁𝑥̅ 

 

 The fitted value of the simple regression is defined as   𝑦𝑖̂ = 𝑏𝑜 +

 𝑏1𝑥𝑖 .  
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3.1. Residuals 

The difference between an observed 𝑦𝑖 and the fitted value of 𝑦𝑖̂,  𝑒𝑖 = 𝑦𝑖 −

𝑦𝑖̂  is referred to as the 𝑖th regression residual. Its magnitude reflects the 

failure of the least squares line to “model” for  that particular point. 

Example 2:  A regression model for the timing of production runs 

We shall consider the following data: variable Y  represents  the time taken 

(in minutes) for a production run (run time) and variable X  the number of 

items (run size) produced for 20 randomly selected orders.  We wish to 

develop an equation to model the relationship between variables Y and X. 

The data are given in Table 1 and corresponding scatter plot in Figure 4. 

TABLE 1.  THE PRODUCTION DATA  

Case Run time Run size Case Run time Run size 

1 195 175 11 220 337 

2 215 189 12 168 58 

3 243 344 13 207 146 

4 162 88 14 225 277 

5 185 114 15 169 123 

6 231 338 16 215 227 

7 234 271 17 147 63 

8 166 173 18 230 337 

9 253 284 19 208 146 

10 196 277 20 172 68 
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Figure 4.  A scatter plot of the production data 

 

 
Now we shall give some properties of estimators in simple linear regression 

model 

3.2  Properties of  estimator of the  slope  

 

Theorem 1. The least squares estimator b1 is an unbiased estimator of 𝛽1. 

Proof: 

Here we take   𝑥𝑖  𝑖 =1, 2 , … , 𝑛  as constants ,while Y  is a random variable . 

𝐸(𝑏1) = 𝐸 (
𝑆𝑥𝑦

𝑆𝑥𝑥
) =

1

𝑆𝑥𝑥
𝐸

1

𝑛
∑(𝑌𝑖

𝑛

𝑖=1

− 𝑌̅)(𝑥𝑖 − 𝑋̅) 
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Using  the  fact  that 

∑(𝑥𝑖 − 𝑋̅)

𝑛

𝑖=1

= 0 

We  get: 

E(b1) =
1

Sxx
∙

1

n
∑ (xi

n
i=1 -x̅)Eyi =

1

Sxx
∙

1

n
∑ (xi

n
i=1 -x̅)(βo + β1xi) =

1

Sxx
∙

1

n
∑ (xi

n
i=1 -x̅) =           =

1

Sxx
∙

1

n
∑ (xi

n
i=1 -x̅)β1(xi-x̅) =

1

Sxx
∙

1

n
∑ (xi

n
i=1 -x̅)2β1 =

Sxx

Sxx
β1 = β1 . 

 

Theorem 2: Variance of the estimator of the slope is 

𝑉𝑎𝑟 (𝑏1) =  
𝜎2

𝑛𝑆𝑥𝑥
 

Proof: 

𝑉𝑎𝑟(𝑏1) = 𝑉𝑎𝑟( 𝑠𝑥𝑦

𝑠𝑥𝑥
) =

1

𝑆𝑥𝑥
2 Var (

1

𝑛
∑ (𝑛

𝑖=1 𝑌𝑖 − 𝑦̅) (𝑥𝑖 − 𝑥̅) =

1

𝑆𝑥𝑥
2  𝑉𝑎𝑟 (

1

𝑛
∑ 𝑌𝑖

𝑛
𝑖=1 (𝑥𝑖 −  𝑥̅))= 

               =
1

𝑆𝑥𝑥
2 ∙

1

𝑛2
∑ (𝑥𝑖

𝑛
𝑖=1 − 𝑥̅)² 𝑉𝑎𝑟(𝑌𝑖) =

1

𝑆𝑥𝑥
2 ∙

1

𝑛2
∑ (𝑥𝑖

𝑛
𝑖=1 − 𝑥̅)²𝜎² =

𝜎²

𝑛𝑆𝑥𝑥
.  

Theorem 3: The least square estimator 𝑏1and 𝑦̅ are uncorrelated. Under the 

normality assumption of 𝑦𝑖 for 𝑖=1,2,…,n,  𝑏1  and   𝑦 ̅ are normally 

distributed and independent. 

Proof: 
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𝐶𝑜𝑣(𝑏1,𝑦̅) = 𝐶𝑜𝑣 (
𝑆𝑥𝑦

𝑆𝑥𝑥
, 𝑦̅) =

1

𝑛𝑆𝑥𝑥
𝐶𝑜𝑣 (𝑆𝑥𝑦, 𝑦̅)

=
1

𝑛𝑆𝑥𝑥
𝐶𝑜𝑣 (∑(𝑥𝑖 − 𝑥)̅̅ ̅

𝑛

𝑖=1

(𝑦𝑖 − 𝑦̅), 𝑦̅) = 

 

       =
1

𝑛𝑆𝑥𝑥
𝐶𝑜𝑣 (∑(𝑥𝑖

𝑛

𝑖=1

− 𝑥̅)𝑦𝑖,𝑦̅) =
1

𝑛2𝑆𝑥𝑥
𝐶𝑜𝑣 (∑(𝑥𝑖

𝑛

𝑖=1

− 𝑥)̅̅ ̅𝑦𝑖,, ∑ 𝑦𝑖

𝑛

𝑖=1

) = 

 

                        =
1

𝑛2𝑆𝑥𝑥
𝐶𝑜𝑣 ∑ ∑(

𝑛

𝑗=1

𝑛

𝑖=1

𝑥𝑖 − 𝑥̅) 𝐶𝑜𝑣 (𝑦𝑖, 𝑦𝑗) 

 
Note since that, 0iEe  and 𝑒𝑖`s are independent, we can write  

𝐶𝑜𝑣(𝑦𝑖 , 𝑦𝑗)=E [(𝑦𝑖 −  𝐸𝑦𝑖)(𝑦𝑗 − 𝐸𝑦𝑖)] =E ( jiee ) = {
𝜎2 𝑖𝑓 𝑖 = 𝑗
𝑜   𝑖𝑓 𝑖 ≠ 𝑗

 

 

Thus, we conclude that 

𝐶𝑜𝑣 (𝑏1, 𝑦̅) =
1

𝑛2𝑆𝑥𝑥
∑(𝑥𝑖

𝑛

𝑖=1

− 𝑥̅)𝜎2 = 0 

Recall that zero correlation is equivalent to the independence between two 

normal variables. Thus, we conclude that 𝑏1and 𝑦̅ are independent.  
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3.3  Properties of estimator of the intercept  

Theorem 4. The least squares estimator 𝑏0   is an unbiased estimator of 𝛽𝑜 

Proof: 

Here also  we  take  𝑥𝑖, 𝑖 = 1,2, … . , 𝑛  as constants ,while Y is a random 

variable . 

𝐸𝑏𝑜 = 𝐸(𝑌𝑖 − 𝑏1𝑥̅) = (
1

𝑛
∑ 𝐸𝑛

𝑖=1 𝑌𝑖) − 𝑥̅𝐸𝑏1 =
1

𝑛
∑ 𝛽𝑜 +𝑛

𝑖=1 𝛽1
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 −

𝛽1𝑥̅ = 𝛽𝑜. 

 
Theorem 5. Variance of the estimator of the slope is: 

Var (bo) = (
1

n
+ 

x̅2

nSxx
) σ2 

Proof: 

𝑉𝑎𝑟(𝑏𝑜) = 𝑉𝑎𝑟 (𝑦̅ − 𝑏1𝑥̅) = 𝑉𝑎𝑟 (𝑦̅) +  (𝑥̅)2𝑉𝑎𝑟(𝑏1) =
𝜎2

𝑛
+  𝑥̅2 𝜎2

𝑛𝑆𝑥𝑥
=

(
1

𝑛
+  

𝑥̅2

𝑛𝑆𝑥𝑥
) 𝜎2.

 

 

3.4   Estimator  of  variance of random error and  its property 

As we said before, in linear regression model iii exY  10   random 

errors ie  are normally distributed with mean equal to 0 and variance 2  

.We wish to estimate variance )(2 eVar .  

We can estimate these errors by replacing 0  and 1  by their respective 

least squares estimates 0b  and 1b giving the residuals 
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)(ˆ
10 iii xbbYe   

These residuals can be used to estimate 2 . We will estimate 2  with 




n

i

ie
n 1

2ˆ
2

1
and we will show that this estimator is asymptotically unbiased 

estimator of 2 . 

 

𝐸 𝜎2̂ = 𝐸 (
1

𝑛 − 2
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

)  

=
1

𝑛 − 2
 𝐸 (∑(𝑏1𝑥𝑖 + 𝑏0 + 𝑒𝑖 − 𝛽1𝑥𝑖 − 𝛽0)

𝑛

𝑖=1

2

) = 

 

          =
1

𝑛−2
𝐸 (∑ ((𝑏1 − 𝛽1)𝑥𝑖 + (𝑏0 − 𝛽0) + 𝑒𝑖)

2𝑛
𝑖=1 )= 

 

         =
1

𝑛−2
(∑ 𝑥𝑖

2𝑛
𝑖=1

𝜎2

𝑆𝑥2 +
𝜎2

𝑛
+ 𝜎2  

𝑥𝑛
2̅̅ ̅̅

𝑆𝑥2 + 𝜎2 − 2𝑏0𝑏1𝑥𝑖 + 2𝐸𝛽0𝛽1  −

     2𝑥𝑖𝐸𝛽1𝑒𝑖 − 2𝐸𝛽0𝑒𝑖) 

We have that 

𝐸𝛽1𝑒𝑖   =
1

𝑆𝑥2
𝐸 (∑(𝑥𝑗 − 𝑥̅𝑛)(𝑦𝑗 − 𝑦̅𝑛)𝑒𝑖

𝑛

𝑗=1

) =   0, 

𝐸𝛽0𝑒𝑖   = 𝐸(𝑦̅𝑛 − 𝛽1𝑥̅𝑛)𝑒𝑖 = 𝐸(𝑏0 + 𝑏1𝑥̅𝑛 + 𝑒̅𝑛 − 𝛽1𝑥̅𝑛)𝑒𝑖 =  
𝜎2

𝑛
    

𝐸 𝛽0𝛽1 = 𝐸 𝛽1. (𝑦̅𝑛 − 𝛽1. 𝑥̅𝑛) = 𝐸𝛽1(𝑏0 + 𝑏1𝑥̅𝑛 + 𝑒̅𝑛 − 𝛽1. 𝑥̅𝑛)   
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             = 𝑏0𝑏1 − 𝑥̅𝑛.
𝜎2

𝑆𝑥2
+

1

𝑆𝑥2
∑ (𝑥𝑖 − 𝑥𝑛)𝑛

𝑖=1 (𝐸𝑒𝑖𝑒̅𝑛 − 𝐸𝑒̅𝑛
2) = 𝑏0𝑏1 −

𝑥̅𝑛.
𝜎2

𝑆𝑥2
   . 

 
When we include these results in the expression for expectation of estimator 

of variance, we get 

 

𝐸𝜎̂2 =
1

𝑛 − 2
∑ 𝑥𝑖

2

𝑛

𝑖=1

.
𝜎2

𝑆𝑥𝑥2
+

𝜎2

𝑛 − 2
+

𝑛

𝑛 − 2

𝜎2. 𝑥̅𝑛
2

𝑆𝑥𝑥2
+ 

𝑛𝜎2

𝑛 − 2
−  

2𝑏0𝑏1

𝑛 − 2
∑ 𝑥𝑖

𝑛

𝑖=1

+
2

𝑛 − 2
𝑏0𝑏1 ∑ 𝑥𝑖

𝑛

𝑖=1

 

           22

2
  




nn

n
 

                                                                                

4. CONCLUSION 

The correlation coefficient is a measure of linear association between   two  

variables ,values  of the correlation coefficient are always between                  

(-1 and  +1). Regression analysis  is  widely used for prediction and 

forecasting . Where its use has  substantial overlap with the field of machine 

learning . Regression analysis  is  also  used  to  understand  which  among  

the  independent  variables  are related   to  the  dependent  variable  ,and  to  

explore  the forms  of these relationships. There are many  examples  of use 

of regression  analysis  could be  used  for  a predicting  yield  of a crop , for  

different  doses   of  a fertilizer ,and regression analysis  also could be used  

to estimate  the  height of  a  person  at a given  age ,by  finding  the  

regression  of  height on age . 
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