
Journal of Applied Science (JAS) Vol.(35) No.(1), June 2022

156

A HADOOP DISTRIBUTED FILE

SYSTEM REPLICATION APPROACH

Eman S.Abead
*1

 , Mohamed H. Khafagy
2
 , Fatma A. Omara

3

1
Computer Department, Faculty of Science, Alasmarya Islamic University, Zliten, Libya

2
Faculty of Computers and Information, Fayoum University, Egypt
3
Faculty of Computers and Information, Cairo University, Egypt

*Corresponding author: e.abead@asmarya.edu.ly

ABSTRACT

Hadoop Distributed File System (HDFS) is a record framework that is intended to store,

examine, and dependably move enormous datasets to client applications. Data replication is

utilized to deal with adaptation to handle failures, with every data block being copied and

stored on various DataNodes. Thereafter, the HDFS promote availability and reliability.

The current Hadoop execution of HDFS does replication in a pipelined design, which

consumes most of the daytime. The replication approach is proposed in this concentrate as a

substitute methodology for effective replica state of affairs. The basic idea of this procedure

is that the client allows two DataNodes to compose one block to the other equally, by

storing the package.

Keywords: Hadoop Distributed File System (HDFS), Replication factor, NameNode,

DataNode, Pipelined, Client.

I. INTRODUCTION

Big Data is a term used to describe huge datasets with a diverse, large and

complicated structure that are hard to store, analyses and visualize for

processes or results [1]. On the other hand, as workstation capacity and large

datasets increase, the need for distributed computation increases daily.

Apache Hadoop simplifies the construction of highly parallel, data-intensive

systems and the resolution of big data issues. Hadoop is used by institutions,

colleges and others worldwide. It can isolate logical cycles in smaller parts

and distribute them to many PCs, as well as provide a convenient method to

store a lot of information. It also offers a reliable and scalable system for

handling massive amounts of data [2].

Journal of Applied Science (JAS) Vol.(35) No.(1), June 2022

157

Creating and deploying distributed systems for big data applications is a

challenging task [3, 4]. Other hands, an effective file system is required to

store all the massive data created by the Internet and to effectively manage

large files. Faster data transport means higher utilization of the distributed

system Hadoop Distributed File System has become the most sought-after

reporting tool for Big Data Computing in recent years [5]. As a result of its

availability and failure tolerance. HDFS is a reporting widget which works

on clusters of hardware widgets and is designed to save excessively massive

material the use of streaming facts get admission to models [6]. HDFS can

be highly fault tolerant and is believed to be connected to low-value

hardware [7]. It also offers high-throughput data access, making it excellent

for applications with huge data collections [8]. A master/child architecture is

used on HDFS. The filesystem namespace is managed by a unique

NameNode, commonly called master server, which also controls client

access to files within the HDFS cluster. However, many DataNodes,

generally one for each node of the cluster, manage storage for the nodes on

which it is executed. HDFS shows the filesystem namespace and allows

users to record data into files. Internally, it is divided into one or more

blocks, which are then stored in a DataNodes collection [8]. Filesystem

namespace activities like opening, closing, and renaming files are managed

by NameNode.

Open, close, and renaming files and directories are File system namespace

activities executed by the NameNode. It also influences how blocks are

mapped to DataNodes. The DataNodes are in charge of serving the file

system's clients' read and write requests. On the NameNode's instructions,

the DataNodes also create, delete, and replicate blocks [7]. When a data

Journal of Applied Science (JAS) Vol.(35) No.(1), June 2022

158

block is first written to a DataNode by a client, the NameNode assigns a

block with a special block ID and assigns a list of DataNodes to host copies

of that block.. The client first writes the block of data to the DataNode. after

which the data is transferred to the next DataNode. As a series many data

packet, a stream of bytes is put into the pipeline. The pipeline also receives

acknowledgment of the data written to the DataNodes. The client asks the

NameNode to write the next block after all replicas have been written

appropriately (see Figure 1).

 Figure 1: Using a pipelined replication approach to write a file to HDFS

The performance of file writing operations suffers because of these pipeline

replication patterns [5]. As a consequence, a new replica placement

approach recommended to increase HDFS availability has been introduced.

According to the suggested approach, an HDFS client writes simultaneously

to two DataNodes, which then send a confirmation to the client, requesting

another write operation. The client's block is then sent simultaneously by the

two DataNodes (DataNode1 and DataNode2) to the other two DataNodes in

the list, thus improving the writing performance. Experimental results using

Journal of Applied Science (JAS) Vol.(35) No.(1), June 2022

159

the TestDFSIO benchmark demonstrate that the suggested replication

technique can reduce execution time and improve write throughput, leading

to faster and availability times for HDFS client. The effectiveness of written

HDFS is demonstrated by the performance figures. The performance figures

show that when the file size goes up, the HDFS write rate throughput goes

down. Replication, network capability, and file block size restrictions are

the main reasons for this. With the help of experimental data, the impact of

file block size and replication factor on HDFS write performance was also

considered.

II.LITERATURE REVIEW

For distributed computing, data replication is a popular research topic.

Several approaches have been proposed for solving this problem. DARE,

for instance, is an HDFS replication approach [9]. Based on this process,

each node independently employed probability sampling and a competitive

aging algorithm to select the number of replicates and the position of each

replicate to be assigned to each file and replicate. The DARE method takes

into account the advantages of recovering existing remote data and selected

parts of the data to be inserted into the filesystem, leading to the creation of

a replica without the use of additional network and computational resources.

The DiskReduce approach is an HDFS improvement that allows for

asynchronous encoding of triple replicated data and provides RAID-class

redundancy overheads [10]. Moreover, DiskReduce can delay encoding long

enough to give the performance advantages of repeated data copies,

increasing a cluster's storage capacity by up to three times, according to

users. The reproduction of ERMS data [11] is dynamic and elastic. Data in

HDFS can be divided into four groups based on data access models and

Journal of Applied Science (JAS) Vol.(35) No.(1), June 2022

160

their popularity: hot data, cooled data, cold data, and normal data. Popular

data is referred to as hot data. When the data is hot, it increases the number

of replicas and cleans up additional replicas when the data cools down.

ERMS has demonstrated its potential to improve the quality of life.

Magicube is a high-reliability, low-redundancy cloud storage architecture

with a single HDFS replica and a fault tolerant method (n, k), according to

Qingqing Feng.et.al. [12]. It simultaneously meets space-saving

requirements and high reliability. The process of fault tolerance is executed

in the background. Magicube is a right choice for batch processing. To

increase throughput, Patel Neha M. et al. [5] suggested a system which

explored a parallel approach to effectively HDFS replication. They

demonstrated that HDFS writing speed improved due to the client's writing

all replicates simultaneously (see Fig. 2).

Figure.2. Using Parallel approach to Write a File on HDFS

The client sends a block to the first DataNode after having instructed

NameNode to create a file and obtaining a DataNode list to allow the reply,

according to Narendra M Patel et al. [13].When a block is populated in the

first DataNode, it starts a thread and sends a request to DataNode2 and

Journal of Applied Science (JAS) Vol.(35) No.(1), June 2022

161

DataNode3 to generate simultaneous replicates of the required block. Once

DataNode2 and DataNode3 have written a block, they acknowledge receipt

on the first date. Upon receipt of the acknowledgement of DataNode2 and

DataNode3, DataNode1 sends an acknowledgement of receipt to the client.

Finally, NameNode receives a notification from the client that the block was

in fact written on three nodes. (see Fig. 3).

Figure.3. Using a parallel (Master/Slave) approach to write a file on HDFS

SMARTH is an enhanced HDFS concept brought forward by Hong Zhang

Patel et al. [14]. Rather than using a single pipeline standby and shutdown

approach, SMARTH uses asynchronous multi pipeline data transfers.

SMARTH maintains a record of the actual transfer speed of the data block

and sends periodic heartbeat messages to the NameNode. DataNodes are

sorted by NameNode based on their historical performance, which it keeps

monitoring in real time. When a client requests a download, the NameNode

sends the client a DataNodes list that it believes will provide the best

throughput. Using multi pipeline design and selecting best performing

Journal of Applied Science (JAS) Vol.(35) No.(1), June 2022

162

DataNodes relative to each client. Eman.S.Abead. et.al.[20] has made it

mandatory. In terms of execution time and throughput, the lazy method has

enhanced HDFS write. The lazy approach's main goal is to let clients

request that a file be written in a short period of time. The sluggish

technique and its components are depicted in Figure 4 as a high-level

overview. A single block is written to three separate DataNodes using the

lazy approach: DataNode1, DataNode2, and DataNode3. NameNode is

asked to write a file by a client. When a block on DataNode1 is full,

DataNode1 gives the client an acknowledgement. The client then gives

NameNode an acknowledgement that the block has been successfully sent to

a node; the client can then request to write the next block. DataNode 1

begins a thread and requests simultaneous replicas of the desired block from

DataNodes 2 and 3. When the block is overwritten on DataNode2 and

DataNode3, they send a message to DataNode1. After receiving the

acknowledgment for DataNode2 and DataNode3, DataNode1 sends an

acknowledgment to NameNode. This allows NameNode to write the block

in Metadata which is written by the three DataNodes, DataNode1,

DataNode2 and DataNode3.

Figure.4 Using the Lazy Replication approach to write a file to HDFS

Journal of Applied Science (JAS) Vol.(35) No.(1), June 2022

163

The single failure problem is the fundamental disadvantage of the lazy approach. This may

occur if DataNode1 fails. As a result, availability may be impacted. To tackle this

difficulty, the lazy approach has been changed by reconfiguring the DataNodes, which is

known as The Reconfigured Lazy Replication approach (see Fig. 5). When a client uploads

a block to both DataNode1 and DataNode2, DataNode1 (or DataNode2) acknowledges the

client after the block is filled on both DataNode1 and DataNode2. The client then gives an

acknowledgement to NameNode indicating that the block was successfully written to a

node and that the client is now ready to request the next write operation. DataNode1 starts a

thread and requests DataNode3 to create parallel replicates of the desired block. Once the

block is written to DataNode3, it acknowledges receiving the DataNode1 with a message.

Finally, DataNode1 accepts NameNode's request to write the block into Metadata which is

written into DataNode1, DataNode2 and DataNode3. If DataNode1 does not receive a

receipt, the same block is sent back to DataNode3.

Figure.5. Using the Reconfigured Lazy Replication approach to write a file to HDFS

III. AN ANATOMICAL AND REPLICATION

APPROACH FOR THE HDFS FILE WRITING

PIPELINE

Creates a new file and writes the data to it to add data from the application

to the HDFS. The written bytes cannot be updated or erased after the file is

Journal of Applied Science (JAS) Vol.(35) No.(1), June 2022

164

closed; However, by reopening the file for append, new data can be inserted.

HDFS employs a single-writer, multiple-reader design. [16]. The TCP/IP

protocol is placed on top of all HDFS communication mechanisms. A client

connects to the NameNode computer over a customizable TCP port. The

DataNode Protocol is used to communicate with the NameNode. The Client

Protocol and the DataNode Protocol are both wrapped in a Remote

Procedure Call (RPC) abstraction. The NameNode never initiates any RPCs

as a result of this architecture. It instead only reacts to RPC requests from

DataNodes and clients [8]. The client creates the file with a request to

create() on DistributedFileSystem.which then sends an RPC query to

NameNode to create a new file without a block in the filesystem namespace.

Many controls are performed by the NameNode to make sure that the file

does not already exist and that the client has the necessary permissions to

create it. NameNode creates a record of the new file if it passes.

DFSOutputStream: DFSOutputStream: Creates files from the byte stream.

Data separates into packets of 64 kilobytes apiece. The contents of a packet

are cut into bits. The checksum is written to an internal queue known as the

data queue, and chunks are 512 bytes long.

The DataStreamer The DataStreamer sends packets to the first DataNode

in the pipeline, which stores them and sends them to the second DataNode

in the pipeline. Similarly, before transmitting the packet to the pipeline's

third (and final) DataNode, the second DataNode caches it.

The ResponseProcessor The ResponseProcessor receives an

acknowledgement from the DataNodes. When the response processor

receives an acknowledgment for a package from all DataNodes, it deletes

the similar package from the ackQueue [6].

Journal of Applied Science (JAS) Vol.(35) No.(1), June 2022

165

A. Positioning of HDFS Replication

The location of replicas is crucial to HDFS speed and reliability. HDFS

differs from most other distributed file systems in that it optimizes replica

placement. The Rack Replica Placement Policy is designed to enhance data

reliability, availability and usage of network bandwidth. Important HDFS

instances are usually executed on a cluster of machines spread over several

racks. Communication between nodes in various racks necessitates the use

of switches. Network bandwidth between machines in a single rack is often

higher than between machines in other racks. The Hadoop Rack Awareness

technique is used by the NameNode to get the rack ID for each DataNode

that belonging to it. Placing clones on separate racks is a straightforward but

inefficient strategy. When an entire rack fails, this eliminates data loss and

allows data to be read using bandwidth from neighboring racks. This

approach evenly distributes replicas across the cluster, allowing for simple

load balancing in the event of component failure[17]. This strategy,

However, increases the writting cost by demanding a write to transfer

blocks to numerous racks.

By default, Hadoop sets the initial copy to the same node as the client (for

clients running outside the cluster, one node is randomly selected, although

the system tries not to select nodes which are too full or too busy). The

second replica is placed on a rack different from the first randomly (off-

rack). The third duplicate goes on the same rack as the second, but at a

different node. Other replicas are deployed at random nodes around the

cluster, the algorithm trying to prevent placing too many replicas on a single

rack [6].

Journal of Applied Science (JAS) Vol.(35) No.(1), June 2022

166

B. Using HDFS (Pipeline) to write a file

HDFS is designed for reliable storage of extremely large files on multiple

devices in a huge cluster. Except for the last block, each file is recorded as a

series of blocks, all of which have the same size. The blocks in the file are

replicated for failure tolerance. Block size and replication factor may be

changed per file. An application is able to specify the number of clones in a

file. The replication factor can be defined during file creation and later

modified. HDFS Write-once files contain only one recorder at all times.

The following are the stages involved in writing a file utilizing the pipelined

replication approach (see Fig. 3) [16]:

1) The HDFS client requests the NameNode to create a new file in the

file system naming space.

2) NameNode gives a list of DataNodes where data blocks can be

stored based on the replication factor.

3) The packets are transmitted to DataNode1 in the pipeline, where

they are stored and transferred to DataNode2. The DataNode2 saves

the packet and transmits it to the DataNode3 in the pipeline in the

same way.

4) The packets are transmitted to DataNode1 in the pipeline, where

they are stored and transferred to DataNode2. The DataNode2 saves

the packet and transmits it to the DataNode3 in the pipeline in the

same way.

5) DataNodes for which all DataNodes have acknowledged receipt are

also received within the pipeline.

Journal of Applied Science (JAS) Vol.(35) No.(1), June 2022

167

6) When finish client has writing data in the flow, it uses close().

C. Replication-assisted Hadoop DFS file write operation

The following section describes the components of the replication approach.

The proposed HDFS replication approach enhanced HDFS write

performance while reducing execution time and enhancing availability of

the proposed Lazy HDFS replication approach. An extra DataNode was

added to do this. Figure 6 provides an overall view of the replication

strategy and its components. The following is the HDFS replication

strategy:

1) In this phase, a client instructs NameNode to write a file, which

corresponds to step 1 of both approaches (lazy, configurable). The

client first receives a list of DataNodes to write and host single-block

replicas, similar to step 2 in both approaches (sloth, customizable).

2) The client writes a block to DataNode1 and DataNode2, that store

the package in a parallel approach, similar to step 3 of the

configurable HDFS approach.

3) Once DataNode1 and DataNode2 have completed a block,

DataNode1 and DataNode2 send a confirmation to the client. After

that, client acknowledges receipt to NameNode, indicating that the

block has been written on two nodes and that the client is now ready

to request the next write operation.

4) DataNode1 and DataNode2 start a thread and request that

DataNode3, DataNode4, and DataNode5 all make clones of the

desired block at the same time.

Journal of Applied Science (JAS) Vol.(35) No.(1), June 2022

168

5) Once the block is written into DataNode3, DataNode4, the block

sends an acknowledgement of receipt to DataNode1, DataNode2.

6) Finally, DN1 sends an acknowledgement to NN, requesting that the

block written in four DataNodes be written in Metadata, after

gaining approval from DN3 and DN4. If DN1 does not receive a

response from DN3 or DN4, DN2 sends the same block to them

once more.

Figure.6. Using the Replication Approach to Write a File on HDFS

IV. PERFORMANCE EVALUATION

The suggested performance evaluation for replication The pipeline concept

is introduced, as well as the lazy and modified lazy approaches. The

hardware, network environment, load balancer, and processing time of each

NameNode/DataNode, on the other hand, have a significant impact on

Journal of Applied Science (JAS) Vol.(35) No.(1), June 2022

169

HDFS write performance. Furthermore, depending on the cluster

configuration option, performance may vary.

A. Configurations of Cluster

The recommended HDFS replication approach is carried out within a private

cluster with a running NameNode, the metadata storage manager and nine

DataNodes, all base machines, offering both compute and data storage

resources as MapReduce client. All nodes have an HCL Intel Core I3 2100

2.4 GHz processor, 8GB RAM, and a 320GB SATA HDD. Every device

has Ubuntu 14.10 installed. In all studies, Hadoop frame 1.2.1 and JDK

1.7.0 are used. These nodes are organized in three racks and connected to

the Edureka data center over a Gigabit Ethernet network.

B. Evaluation Using TestDFSIO

The effect of the suggested HDFS replication approach on the HDFS write

throughput is evaluated using the TestDFSIO benchmarking. This HDFS

benchmark is for reading and writing test. It's useful for such things as

HDFS stress testing, discovering network performance bottlenecks, and

shaking up cluster machine hardware, OS, and Hadoop configuration

(especially the NameNode and the DataNodes). The mean read, write, and

append throughput for is measured by TestDFSIO. TestDFSIO is a software

supplied with the Hadoop release [19].

Figure 7(a,b) shows experimental results for writing HDFS files with a four-

fold replication factor and a 64 MB block size, as well as file sizes ranging

from one to ten gigabytes. According to the trial results in Fig.7(a), the lazy

HDFS replication approach has a 40% reduction in execution time, a 25%

reduction in the reconfigured lazy replication approach, and a 26%

Journal of Applied Science (JAS) Vol.(35) No.(1), June 2022

170

reduction in the suggested HDFS replication approach when compared to

the pipelined replication approach.

The results of the throughput of the Lazy, modified lazy, Default pipelined,

and the suggested HDFS replication approach are shown in Fig.7(b).

According to the findings, the lazy HDFS replication approach has a

throughput improvement of around 15%, the reconfigured lazy replication

approach has a throughput improvement of 12%, and the The suggested

HDFS replication approach has a throughput improvement of 11% versus

the default pipeline replicate. The results also show that when the file size

grows larger, the throughput decreases in all three strategies.

A variety of factors influence the write performance of HDFS. A file will

have less blocks if the block size is greater, for instance. This allows the

client to read/write more data without connecting to NameNode, and also

reduces the size and weight of NameNode metadata. This may be important

for large file systems. Larger file sizes and block counts, on the other hand,

will increase the overall number of HDFS client requests to NameNode,

resulting in additional network overhead.

Actually, the dfs.block.size property in HDFS allows you to adjust the

default block size. The results of the experiment are validated with a block

size of 128.

Journal of Applied Science (JAS) Vol.(35) No.(1), June 2022

171

Fig. 7(a) TestDFSIO Execution Time (sec)

Fig. 7(b) TestDFSIO Throughput (MB/sec)

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

Ex
ec

u
ti

o
n

 T
im

e
 (

Se
c

)
HDFS file write operation Execution Time (sec)

 R.F=4 : Block Size=64 MB

Pipeline

The Lazy

The Reconfigured
Lazy

The Enhancement
Lazy

File Size(GB)

The suggested
Approach

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Th
ro

u
gh

p
u

t
 (

M
B

/s
e

c)

File Size(GB)

HDFS Write operation Throughput (MB/sec)
 R.F=4 : Block Size=64 MB

Pipeline

Parallel(Broadcast)

Parallel(Master/Sla
ve)
The Enhancement
Lazy

The suggested
Approach

Journal of Applied Science (JAS) Vol.(35) No.(1), June 2022

172

When considering a large of block size, Figure 7(c) shows the performance

of the four approaches (i.e., 128 MB).Compared to the pipeline technique,

the lazy strategy improves throughput of file write by about 15% to 20%,

the modified lazy approach of about 12–15%, and the proposed HDFS

replication approach by about 11–16%. On the other side, file write

throughput is affected by replication factor and network bandwidth limits.

Fig. 7(c) TestDFSIO Throughput (MB/sec) –Different block size

V.CONCLUSIONS

This work expands on and enhances HDFS replication, a strategy for

reducing acknowledgement wait times and increasing data write throughput

on the HDFS client side. Data replication is a approach that is often used in

distributed file systems to improve data availability and writing throughput.

Each block in HDFS is replicated on many nodes. The design and

implementation of an alternative replication approach known as The

suggested HDFS replication approach for efficient replica placement on

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10

Th
ro

u
gh

p
u

t
(M

B
/S

ec
)

File size (GB)

HDFS Write operation Throughput (MB/sec)
 R.F=4 : Block Size=128 MB

Pipeline

The Lazy

The Reconfigured
Lazy

The Enhancement
Lazy

The suggested
Approach

Journal of Applied Science (JAS) Vol.(35) No.(1), June 2022

173

HDFS that can increase availability are presented in this research. by adding

an additional DataNode as a backup for DataNode1 to increase availability

without compromising write performance or execution time. According to

the implementation results, the proposed HDFS replication approach

reduces the execution time of HDFS file writes by about 25% compared to

pipeline approaches when the replication factor is three and the block size is

64 MB, and when the file size is increased from (1,2,3,...,9,10) GB using the

TestDFSIO benchmark. The experimental findings of throughput with

different values of block size and replication factor are based on the

flexibility to modify default block size and replication factor. When the

replication factor is 3, and the block size is 64MB, the throughput

improvement for the second HDFS replication strategy is roughly 12%

when compared to the default pipelined replication. As a result of the

findings, The results also show that when the file size grows larger, the

throughput of the two approaches decreases. By taking huge block size into

account, the performance of the two strategies may be compared. In second

HDFS replication and pipeline approaches, the increase in file write

throughput is approximately 12 to 15%. The experiments were carried out

with the replication factor of a file two in mind. The testing results suggest

that the second recommended strategy and pipeline approach boost write

throughput by up to 18%.

REFERENCES

[1] B. Lublinsky, K. T. Smith, and A. Yakubovich, Professional Hadoop Solutions: John Wiley &

Sons, 2013.

[2] S. Sagiroglu and D. Sinanc, "Big data: A review," in Collaboration Technologies and Systems

(CTS), 2013 International Conference on, 2013, pp. 43-48.

 [3] R. Akerkar, Big data computing: CRC Press, 2013, pp. 25-55.

[4] A. Gkoulalas-Divanis and A. Labbi, Large-Scale Data Analytics: Springer, 2014.

Journal of Applied Science (JAS) Vol.(35) No.(1), June 2022

174

[5] M. Patel Neha, M. Patel Narendra, M. I. Hasan, D. Shah Parth, and M. Patel Mayur, "Improving

HDFS write performance using efficient replica placement," in Confluence The Next

Generation Information Technology Summit (Confluence), 2014 5th International Conference-,

2014, pp. 35-38.

 [6] (Access:25/5/2022 15:00 PM). HDFS Architecture Available:

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html

 [7] T. White, Hadoop: The definitive guide: " O'Reilly Media, Inc.", 2012.

[8] D. Borthakur, "The Hadoop distributed file system: Architecture and design," Hadoop Project

Website, vol. 11, p. 21, 2007.

[9] C. L. Abad, Y. Lu, and R. H. Campbell, "DARE: Adaptive data replication for efficient cluster

scheduling," in Cluster Computing (CLUSTER), 2011 IEEE International Conference on, 2011,

pp. 158-169.

[10] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson, "DiskReduce: RAID for data-intensive scalable

computing," in Proceedings of the 4th Annual Workshop on Petascale Data Storage, 2009, pp.

5-10.

[11] Z. Cheng, Z. Luan, Y. Meng, Y. Xu, D. Qian, A. Roy, N. Zhang, and G. Guan, "Erms: an

elastic replication management system for hdfs," in Cluster Computing Workshops (CLUSTER

WORKSHOPS), 2012 IEEE International Conference on, 2012, pp. 33-40.

[12] Q. Feng, J. Han, Y. Gao, and D. Meng, "Magicube: High Reliability and Low Redundancy

Storage Architecture for Cloud Computing," in Networking, Architecture and Storage (NAS),

2012 IEEE 7th International Conference on, 2012, pp. 88-94.

[13] H. Zhang, L. Wang, and H. Huang, "SMARTH: Enabling Multi-pipeline Data Transfer in

HDFS," in Parallel Processing (ICPP), 2014 43rd International Conference on, 2014, pp. 30-

39.

 [14] N. M. Patel, N. M. Patel, M. I. Hasan, and M. M. Patel, "Improving Data Transfer Rate and

Throughput of HDFS using Efficient Replica Placement," International Journal of Computer

Applications, vol. 86, 2014.

[15] Eman.S.Abead, Mohamed H. Khafagy, and Fatma A. Omara, "A Comparative Study of HDFS

Replication Approaches,", the International Journal of IT and Engineering Issues, Vol. 03,

Issue-08, August 2015, pp 5-11

 [16] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, "The Hadoop distributed file system," in

Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on, 2010, pp. 1-

10.

[17] Ebada Sarhan, Atif Ghalwash, Mohamed Khafagy," Queue weighting load-balancing technique

for database replication in dynamic content web sites ", Proceedings of the 9th WSEAS

International Conference on APPLIED COMPUTER SCIENCE, 2009, Pp. 50-55

[19] M. G. Noll. (APR 9TH, 2011). Benchmarking and Stress Testing an Hadoop Cluster With

TeraSort, TestDFSIO & Co. (Access: 25/6/2021 15:00 PM) Available: http://www.michael-

noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-

testdfsio-nnbench-mrbench/

[20] Eman.S.Abead, Mohamed H. Khafagy, and Fatma A. Omara, " An Efficient Replication

Technique for Hadoop Distributed File System, in Proceeding of the International Journal

of Scientific and Engineering Research, Volume 7, Issue 1, ISSN: 2229-5518, January 2016, pp

254- 162 .

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://193.227.31.6/ComputersInformation/ComputerScience/pdf/DrMohamed4.pdf
http://193.227.31.6/ComputersInformation/ComputerScience/pdf/DrMohamed4.pdf
http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench/
http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench/
http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench/

