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Abstract

Understanding the dynamic and thermal characteristics of the boundary layer (BL) flows
is an essential step toward the best design and operational conditions for many
engineering devices. Flow characteristics within the boundary layer are governed by two
forces that are in a mutual race to dominate the flow, the viscous and inertial forces. The
state of the flow is determined by the relative domination of these two forces inside the
boundary layer zone. Theoretical solutions for many BL flow types existed since the
beginning of the 20th century. Theoretical solutions are strictly possible for simple
boundary layer flow configurations within the laminar range and before flow separation
occurs. For practical situations where boundary layer flow problems are prescribed with
complex flow configurations, CFD techniques represent the most suitable approach to
tackle such types of flows. In this study, the laminar boundary layer flow over a flat plate
has been solved numerically leading to a detailed analysis of the boundary layer flow with
accuracy comparable to that of the theoretical solution.
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INTRODUCTION

Since its discovery by Ludwig Prandtl in 1904, the boundary layer constitutes one of the main
physical phenomenons that retained the greatest attention of the scientific community for its
importance, and hence became in its own a major research field in fluid mechanics. The
boundary layer phenomenon emerges as a result of viscous effects that tend to suppress fluid
motion near the surface of a solid wall. This kind of interaction between the fluid layers adjacent
to the wall and the solid surface modifies the dynamic and thermal characteristics of the flow
field. For large Reynolds number viscous flows, as viscous diffusion propagates faster across
the flow than the advection speed of the fluid particles, viscous diffusion time becomes much
shorter than the residence time and hence a thin boundary layer arises. In this region where
viscous effects dominate fluid motion the velocity field takes an altered shape constrained by
the presence of the wall where the velocity vanishes and by the competing interaction between
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viscous and inertial effects. Consequently, the flow field can be classified into two distinct
regions, the region away from the wall in which viscous effects are negligible and a region
immediately adjacent to the walls in which viscous and inertial effects are significant . The
mathematical formulation of the boundary layer equations was first introduced by Prandtl in
his paper of 1904 which have been studied and solved by Blasius in 1908 for the case of viscous
laminar flow over a flat plate [1]. For a while, Von Karman (1921) proposed his approach to
solve the boundary layer problem using the momentum integral equation [2]. Burgers (1925)
revealed by experimental observations the velocity distribution across the boundary layer on a
flat plate, bringing to light the simultaneous presence of laminar and turbulent regions [3]
.Tollmien (1929) considered the Blasius velocity profile near a flat plate and obtained the
critical Reynolds number above which the flow becomes unstable to a traveling-wave type of
disturbances in a certain frequency range [4]. One can also mention some of the early boundary
layer works such as the wedge flow boundary layer studied by Flakner —Skan (1931), the
linearly retarded flow studied by Hartee (1937) and Stewartson (1954), the wake flow past a
circular cylinder studied by Goldstein (1933) and the boundary layer approximations for a jet
flow studied by Schlichiting [4]. During the era after WW2 (World War 2), special attention
was paid to boundary layer problems linked to the aviation and aeroplan industry [5]. The
stability of compressible boundary layers was first considered by Lees & Lin (1946) and
followed by Lees (1947), Dunn & Lin(1955), Lees & Reshotko (1962), and Mack (1965) [6].
The subject has increasingly attracts many research works that try to reveal the detailed physics
of the boundary layer flows and their instability inducing mechanisms which are full of
complicity and rich of physical phenomenon associated to this type of flow. The induced drag
force over the surface of an aeroplane wings, ships and missiles, the power generation through
the compressor and turbine stages in jet engines, wind turbine capacity to produce clean energy,
the effectiveness of air intakes for ram and turbojets and so on are all linked to the concept of
the boundary layer and its associated flow physics. Some industrial applications need to take
into account the effects of boundary layer flow induced by a stretching surface as such the case
of polymer extrusion processes, melt spinning processes, aerodynamic extrusion of plastic
sheets, glass fiber production, the cooling and drying of paper and textiles [7]. These practical
flow problems are generally associated with complex flow configurations and need to be solved
in the real three dimensional space. Therefore, classical theoretical techniques can’t be used to
solve the governing equations of the flow. Here comes the necessity for using the
Computational Fluid Dynamics (CFD) techniques which can handle any kind of flow and
describe the flow behavior with an accuracy which is very close to that of theoretical solutions.
There are three classical numerical techniques used to solve the governing equations of fluid
flow problems which are the Finite difference, the finite volume and the finite element methods.
For each of these methods, the partial differential equations that govern the flow are
transformed explicitly or implicitly into a system of linear equations that can be efficiently
solved using algorithms designed for this purpose. The current study presents numerical
resolution of a 2D steady boundary layer flow problem over a flat plat using finite difference
method. Likwise, in order to validate simulation results the problem has been solved using the
classical theoretical approach (Blasius solution). Profiles of all flow variables resulted from the
two solution techniques have been compared and analyzed.
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GOVERNING EQUATIONS

The governing equations of the boundary layer flow can be derived from the Navier-Stokes
(N.S) equations using some realistic physical assumptions that reduce the governing equations
into the following parabolic form [8]:

6u+ ou 8p+ 0%u "
“ox ”ay_ d0x ”ayz (1)

With the continuity equation written as

6u+6v_0 )
ox  dy @

Since there is no pressure gradient following x direction the governing equations simplify
further to

6u+ ou 0%u 3
Yax Ty T Hay2 ®)

Subjected to the boundary conditions (B.C):
u(x,0) =v(x,0)=0 (No slip B.C) , u(x,6) =0
BLASIUS SIMILARITY SOLUTION
The first attempt to solve boundary layer equations were done by Blasius relying on the concept

of local similarity of the non-dimensional velocity profile with respect to an appropriate
dimensionless similarity variable (7).

=f() (4)

n= y\/% (5)

Using the following definition of a stream function

ol IS

Where

Y =VvUx f(n) (6)

The boundary layer equation can be transformed after some mathematical manipulation to a
third order ordinary differential equation
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2f"+ff =0 (7)

Subjected to the following transformed BC’s:
f=0=0 ;f=0=0;fn->o)=1

This third order nonlinear ordinary differential equation (ODE) can be solved numerically by
decomposing it into a system of three first-order ordinary differential equations [9]. The
resulting coupled system of initial value problems can then be integrated easily using second or
fourth order Runge-Kutta method. The resulting values of the non-dimensional stream function

f (77) and its derivatives can then be used to compute all flow variables within the BL (velocity
profile, the BL thickness, shear stresses ... etc).

NUMERICAL SOLUTION

We consider a flat plate of length L of infinite width and negligible thickness, that lies in
the x — y plane, and whose two edges correspond to x = 0 and x = L as shown in the Figure
(1.). The plate is supposed to be subjected to a uniform flow with a velocity field given by e,, .
The flow over the plate is surrounded by appropriate boundary conditions arising from the no-
slip condition where the velocity components at the surface of the wall vanish (u = v = 0) and
the formation of a thin boundary layer, of thickness (x) , outside which the boundary layers
remains effectively inviscid. It follows that the flow external to the boundary layer is unaffected
by the presence of the plate. Hence, the streamwise velocity at the outer edge of the boundary
layer is U(x)=Ue,. The governing equations (eq:3, eq:2) have been discretized using uniform
grid in the streamwise direction and a non-uniform grid that varies as a hyperbolic tangent
profile in the normal direction to the wall (e, ).

tanh [y (—1 + 2(1—_1))]

Ny—1

Vi = tanh (y) - Y

(8)

The use of non-uniform hyperbolic tangent grid profile in y direction clusters grid points in the
flow regions near the wall where the flow field undergoes big variations and changes [10]. Grid
resolution has been kept the same throughout all simulations realized in this work.
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Figure 1. The non-uniform grid

The resolution procedure starts with the discretization of the governing equations using
appropriate finite difference formulas to approximate the different derivative terms in these
equations. Since flow variables following the normal direction to the boundary exhibit higher
variations than that in the streamwise direction, derivatives in the e direction have been

discretized using the central finite difference scheme which is second order accurate in y. Other
terms have been discretized using the forward finite difference scheme which is first order
accurate. The solution procedure admitted the use of marching technique following
downstream direction e,., which can be either explicit or implicit. Explicit marching scheme is
simple but suffers from the problem of numerical instability unless a very small marching step
size (AX) is used. Contrary to the explicit marching scheme, implicit marching scheme is
unconditionally stable and no restrictions are made to the choice of the marching step size.
Therefore, the implicit marching scheme has been adopted to solve the boundary layer
equations and model the flow.
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Figure 2: Finite-difference mesh

The equations have been discretized on the rectangular grid as shown by figure (2). The mesh
point (i,j) indicates the actual location where velocity field is completely known or already
calculated which would be used to march downstream and predict the next station values at
(i + 1,j). The discretized governing equation on the non-uniform grid using an implicit
marching scheme along e, is as follows:

Yy Yiag e Y Y ja
e T I i < S AYjn AYj 9)
" Ax Ay AY)) AYjq+AYj
2

This can be converted into a discrete tridiaogonal form:

—2ulx 2ulx 1 1 2ulx
Uit1,j —

Uir,j+1 T : - Uip1,j-1 =
(Ayje1 +Ay;) - Ay T (Byjen + Ayp) \Byjaa o Ay, (&yje1 +4y)) - by
Ax
Ui M T Ry Ay U (uijr1 = ij-1) (10)

This corresponds to the following tridiaogonal matrix system:
BUj+1 + Au] + Cuj_1 = RHS] (11)

The implicitly discretized momentum equation at grid points along the normal direction
performs a tridiagonal matrix system for each downstream location. The constructed tridiagonal
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matrix system can be solved by any iterative means or using matrix inversion to get the velocity
component u(x;, y;) at every mesh point. There is no instability constraints regarding the value
of the marching step (Ax). The downstream velocity component can then be used to predict
the values of the normal velocity component v(x;, y;) at each grid site using the discretized
continuity equation:
Uit1,j — Uij n Vitrj ~ Vit1j-1 _ 0 (12)
Ax Ay;

To improve the accuracy of the finite difference modeling of the continuity equation, the first
terms ou/ox which represents the first derivative of u with respect to x have to be evaluated at
the grid level (j — %) as the second term of the continuity equation ov /dy . This approximation
is done by calculating the average of ou/ox using its values at the grid level j and the grid level
j — 1 as follows:

Vit1,j — Vit1,j-1 + 1 (ui+1,j — Uij n Uit1,j—1 — ui,j—l)

Ay; 2 Ax Ax

=0 (13)

The next downstream value of the normal velocity component can then be obtained:

Vit1,j = Vitrj-1 + % (irrj = Uiy + Uiy, jo1 — Ujjo1) (14)

The solution has been conducted using an algorithm written in FORTRAN language and
compiled on a Linux system. The advantage of using a Linux system lies on the availability of
different FORTRAN compilers and different post-treatment tools free of charge. The resolution
algorithm starts by defining the different variables and parameters needed, and then the grid
has to be generated followed by setting the boundary conditions. Since the implicit scheme used
is based on using the downstream direction as a marching direction, the discretized boundary
layer equations at all the nodes in the normal direction constitute a tri-diagonal system and that
is for each downstream station. These matrix systems are solved consequently starting from the
leading edge of the plate to the trailing edge using Thomas algorithm known as TDMA (Tri-
diagonal matrix algorithm). The predicted values of downstream velocity component at each
downstream location is used to update the normal velocity component using the discretize
continuity equation. The flow chart presented by Figure (3) resumes the resolution procedure
used to solve the considered boundary layer flow problem.
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The governing equations of the steady laminar boundary layer flow are solved using flow and
simulation parameters described by the table (1.)

Table 1 : Simulation parameters

Ax Aymin Aymax
Re p (kg/m®) | U(m/s)| Ly (m) |Ly,m |x10% |x105 |x10° | N, | N,
10%:x 10° 1 1 6 3 6 4.2 6.4 | 1000 | 500

The dynamic viscosity could be determined according to the suggested values of Reynolds
number (Re = pU L,/ ) which is defined based on the free stream velocity U and the plate

length L,. The parameters N, , N denote the number of grid points following e, and e,

directions respectively. Boundary layer flow simulations have been conducted using 10 values
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Numerical simulation of the laminar boundary layer flow over a flat plate

of Reynolds number starting from Re =10 to Re =2x10°. Simulation results are compared
to their corresponding theoretical results obtained by Blasius similarity solution. For clarity
purposes, we have presented exclusively the detailed results obtained for the boundary layer
flow at Re=5x10*. Only the stream wise velocity profile as a function of the normal
coordinate direction and the drag coefficient characteristics have been presented for the
complete set of Reynolds numbers considered.

Displacement and momentum thickness
Displacement thickness (") and momentum thickness (&) defined by:

5*:5(1—5)@ , ezju(u —u)dy,

account respectively for the reduction in the flow rate and the loss in momentum caused by
boundary layer formation over the wall surface. Figure (4) compares simulation and theoretical
displacement and momentum thickness profiles for each location in the dawn stream direction
for the boundary layer flow at Re =5x10*. A good agreement can be seen at lower values of
these two quantities while a slight discrepancy appears as their values increase. This
discrepancy may be owed to the truncation error associated to the finite difference (FD)
schemes used. Increasing grid resolution to capture strong flow dynamic variations inside the
boundary layer may help to correct this slight discrepancy.

0.06 -
4* Blasins — 8 — :

o2 55* Numerical—*— |

0.04 ¢ Blasius —e— —

- # Numerical—&—

0.03

5.0

0.02

0.01

Figure 4: Displacement and momentum thickness profiles
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Boundary layer velocity profile

The main flow feature that acquires much of interest is the characteristics of the velocity field.
Many physical flow phenomenon (such as shear stress, convection flux, viscous diffusion,
vorticity .. etc) can be described mathematically using flow velocity field. The downstream
velocity profile can be regarded as an indicative tool to evaluate the accuracy of flow simulation
results when compared to experimental measurements or analytical solutions. Downstream
velocity component at Re=5x10* is compared in Figure (5) to the corresponding values
obtained experimentally by (Liepmann (1943)) [11] and also to downstream velocity profile
issue of Blasius analytical solution. Velocity profile obtained by numerical simulation
superposes exactly to the corresponding profile given by Blasius analytical solution. There are
some little discrepancies between both simulation and analytical profiles from experimental
values; this may be owed to measurement errors since these measurements are conducted using
old measuring techniques such as hot wire probes or Pitot tube probe. Figure (6) compares
downstream velocity profile of both numerical and Blasius analytical solution at different
Reynolds number. The overall behavior of the two solution approaches matches well except at
higher values of Reynolds number where there are some discrepancies between analytical and
simulation results very close to the wall that may be caused by inappropriate mesh resolution
that need to be increased to allow grid resolution captures all features of the flow in this region.
The normal velocity component profiles atRe =5x10* for both numerical and analytical
solution are presented by Figure (7). This velocity component as expected acquires low values
since the main flow stream is in the downstream direction. Also at this Reynolds number the
two velocity profiles take exactly the same values at each non-dimensional location 7n(x,y).

1.2

Blasius —8—

CX])CI'IHICI]ER]—.—

Numerical
0.8 -Re==5x10*

0.4 Y N S ....................... . ...................... ....................... . .................... —

0.2 bogf S IR S I ]

2 4 6 8 10
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Figure 5: Streamwise velocity profile
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Velocity contours

Figure (8) shows the contours of streamwise velocity component over the entire flow domain
at Re =5 x 10*. Velocity contours shows the different levels set by the gradual increase of the
streamwise velocity component normal to the wall, from zero values at the wall to the value of
the free stream velocity at the edges of the boundary layer. As Reynolds number increases the
boundary layer thickness becomes thinner as clearly shown by Figure (8b).

0.5 u(x,y) m{.w 0 ul(x,y) m{.s
04 - 08 04 — 0.8
— 03 = — 0.6 — 03 = — 0.6
02 b - 0.4 =02 — 0.4
01 = — 0.2 01 = = 0.2
o ‘ 0  — ——m—
0 1 2 3 4 5 [ 0 1 2 3 5 6
x(m) x(m)
Figure 8: stream wise velocity contours (a) Re=5 x 10%, (b) Re=1 x 10°
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Figure 9: Drag coefficient

coefficient
The drag coefficient (Cp = f/%pUZ) is a dimensionless quantity which in the case of the

boundary layer flow represents the mean wall shear stress (7T) at a given Reynolds number
based on free stream velocity. As shown by Figure (9), the drag coefficient decreases with
increasing Reynolds number. The drag coefficient computed numerically is slightly
underestimated for lower values of Reynolds 100 <Re <500 and slightly overestimated at
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Re ~1000. At higher Reynolds number numerical simulations match very well the predicted
values by Blasius analytical solution. As mentioned by [2] the intermediate region1< Re <1000
has been the subject of many analytical and numerical studies. The best approximation for the
drag coefficient in this region was given by an empirical correlation developed by (Imai) [12]:

1.328 2.3

_|_ R
\/ ReL ReL
As shown by Figure (9), the values of the drag coefficient given by this empirical correlation
are generally in a good agreement with the current simulation results.

CDz

(15)

CONCLUSION

In this study, the laminar flow over a flat plat was studied and simulated. The physical
phenomenon associated to this type of flow was analyzed, the most important of which is the
boundary layer phenomena with the associated physical effects and changes occurred within
the flow. The different stages that led to the emergence of what is so called the boundary layer
theory have been reviewed. The theoretical solution to the boundary layer flow over a flat plat
developed by Blasius in 1905 has been reviewed and the resulting third order ordinary
differential has been solved using the fourth order Runge-Kutta method. The theoretical results
were reviewed and compared with the experimental results of this type of flow. The results
validate the boundary layer symmetry hypothesis and showed good agreement between
experimental and theoretical flow features. The main purpose of the current work has been
achieved which targets the application of some CFD (Computational fluid dynamics)
techniques to solve the considered flow problem. An implicit finite difference technique is used
to discretize the governing equations over the flow domain, which is described by a non-
uniform mesh in order to improve simulation’s resolution near the wall where strong variations
in the flow field takes place. The resolution has been conducted entirely using FORTRAN
language and compiled by a FORTRAN compiler on a Linux operating system. The advantages
of using Linux operating system are numerous and mainly because all compilers and many post
treatment softwares are available free of charge. Boundary layer flow simulations are
successfully realized leading to results in a very good agreement with both, the theoretical and
experimental results.
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