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ABSTRACT 

   In order to shorten product design time, engineers need to create high quality meshes within 

a few days or hours. Newer automated techniques have been published to tackle this need, the 

Cartesian Cut Cell is one of them. This study is focused on the effect of different Cut Cell 

meshing strategies on the accuracy of aerodynamic performance predictions. The method can 

be described as a methodology in which Cut Cells are applied to the geometry utilizing a 

process involving rectangular/hexagonal cells on a regular lattice cutting through the 

geometry. The Cut Cell meshing is a general purpose designed for ANSYS FLUENT, making 

use of Workbench to construct the airfoil shape and the mesh.  The results obtained for 

NACA-0012 are computed using two models available in ANSYS FLUENT, namely the Eq. 

2 k-ω SST and the Eq. 3 k-kl-ω models. The three-dimensional numerical simulations were 

created for steady incompressible flow around NACA-0012 shape. Lift coefficient, Boundary 

layer thickness, mesh expansion ratio, and mesh density variation parameters were 

investigated. For this application both models produce good lift results. k-kl-ω produce better 

lift and the results are close to the measured data.  The Cut Cell method showed a very good 

agreement between Computational Fluid Dynamics results and experimental data. This work 

illustrated that the Cartesian Cut Cell method has the ability to generate high quality mesh, 

which captures the details of the viscous boundary layer easily. The future work is to use 

more sophisticated turbulence models and mesh refinement for air craft wing with flap. 
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1. INTRODUCTION: 

      In the pursuit of increased airplane operating profits, the main goal for airframe 

manufacturers is to optimize the performance of their product. Customers seek good quality 

service in terms of minimum cost and reasonable flight time, while aviation manufacturers 

look to increase their profit margin in today’s competitive market. Therefore, manufacturers 

need to define airplane wing configurations that possess the   qualities essential to achieve 

those goals. 
Defining airplane configurations is an overwhelmingly challenging task. Subsequently, 

carrying out research to increase the accuracy of modeling turbulent flow with extensive 

separations, the flow near the airfoil edge, trailing viscous wakes and the merging boundary 

layer becomes inevitable to develop such airplane configurations. With advances in 

computing power and Computational Fluid Dynamics (CFD) algorithms, the complexity of 

the simulated engineering models has significantly increased. This fact encourages engineers 

to rely on CFD simulations for testing and refining new technological ideas.  A host of 

approaches to CFD were proposed over the course of the last three decades or so. The work of 

Purvis and Burkhalater in 1979 [1], and Wedan and South in 1983 [2], marked the advent of 

the Cartesian Cut Cell method. Their work involved utilizing the finite volume method for the 

full potential equations. In [3] the authors were able to successfully apply it to the shallow 

water equations in two and three dimensions. In each cell, the process of cutting the geometry 

is based on a linear piecewise cut. Clarke et al. [4], extended this work to the 2D Euler 

equations. This extension involved the addition of an agglomeration procedure in which 

smaller cells were treated as adjacent cells in a way that would not limit the specified time 

step. The work demonstrated some agreement relative to an analytical airfoil solution at the 

leading edge. The Euler finite volume method was extended to 3D by Gaffney et al. [5]. Their 

extended approach continued to use linear cuts and the small volume cut cell agglomeration 

procedure. Later, significant interest in the adaptive Cartesian Cut algorithms for problems 

associated with complex geometries was seen. In this regard, Aftosmis et al. [6], reported a 

new methodology to handle rapid and robust Cartesian mesh generation pertaining to 

component based geometry. The mesh is generated via a cell division process applied to the 

initial uniform grid. Yang et al. [7,8], suggested a methodology for computing compressible 

flows. The algorithm uses the Cartesian Cut Cell approach in conjunction with a multi-

dimensional high resolution upwind finite volume scheme. The algorithm is versatile in the 

sense that it is able to cope with static as well as moving body problems, in which the 

associated geometry is complex. Yang el al. in [9], extended the work reported in [6,7], 

specifically, the Cartesian cut cell method to the three-dimensional case. Their extension 

covers the static and moving body problems. In 2000, Tucker and Pan [10], applied the 

Cartesian Cut Cell method to model incompressible laminar flow. The procedure involved 

cutting out solid bodies or boundaries in the flow domain. Three benchmarks were used to 

qualify this hybrid approach. Shortly afterwards, Causon et al. [11], reported a new approach 
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in which the focus was on calculating shallow water flows in the presence of moving physical 

boundaries. methodology was qualified using a problem involving a ship hull moving at 

supercritical speed and conjectural landslide events in which the material dips suddenly into a 

quiescent shallow lake and a fiord. Murnam et al. [12], proposed a supersonic missile system 

with a small number of synchronous canard control surfaces. An automated inviscid Cartesian 

method was used in designing the missile system. Simulations for total motion were carried 

out for the canard dither schedules pertaining to level flight, pitch and yaw maneuvers. High 

resolution viscous simulations and other experimental data were used to validate the time 

dependent dynamic simulations which were utilized to determine dynamic stability 

derivatives. Wang et al. [13], proposed a finite volume methodology to tackle electromagnetic 

wave dynamics in the time domain. A host of test cases with existing analytical solutions 

were used to qualify the computational electromagnetic solver. Murnam et al. [14], proposed 

a methodology to simulate impermeable boundaries within a fixed Cartesian mesh. 

The scheme lowers the frequency at which the geometry is intersected with the Cartesian 

volume within a full simulation. Ingram et al. [15], reported a Cartesian Cut Cell based 

method which was regarded as an alternative to the traditional boundary fitted grid methods.  

Not much work has been done involving the full cell-based methods for full Navier Stokes 

equations. In 1994, Tau [16], presented a two-dimensional approach for solving the Navier-

Stokes equation on a staggered grid. A decade later, the method was extended by Kirkpatrick 

et al. [17], to solve the Navier-Stokes equations on a non-uniform staggered grid in three 

dimensions involving curved boundaries. The methodology was examined using a flow 

through a channel placed oblique relative to the grid as well as a flow past a cylinder at Re = 

40. The results obtained seem within good agreement relative to experimental data obtained 

for this flow. Dorge and Verstappen [18], presented a method to solve the unsteady 

incompressible Navier-Stokes equations, in which the problem domain was of arbitrarily 

shaped boundaries. The method was examined using an incompressible unsteady flow around 

a circular cylinder in which Re is 100. Rosatti et al. [19], presented methods based on radial 

basis functions associated with a high degree of approximation. Shortly afterward, Rosatti et 

al. [20], suggested extending the shallow water semi-implicit models on staggered Cartesian 

meshes to account for the existence of Cut Cells at the computational space boundaries. A 

host of simulations were carried out to assess the accuracy of the environmental flow models. 

Chung [21], reported a Cartesian grid-based methodology with Cut Cells intended for 

simulating two dimensional unsteady viscous incompressible flows associated with arbitrarily 

shaped rigid bodies. Ji et al. [22], suggested a numerical methodology for solving, in 2D, the 

variable coefficients of the Poisson equation in which the interface is irregular, and the 

coefficients as well as the very solution might not be continuous everywhere across the 

solution space. Popsecu et al. [23], attempted to simulate the sound waves generated by 

oscillating baffled pistons. The wave equations in Cartesian coordinates along with cut cells 

were used along with a compact finite volume scheme to implement spatial discretization. 

Sang and Li [24], presented a methodology for handling the computations associated with the 

complex flow fields around three-dimensional high lift configurations. The performance of 

the methodology was compared with experimental data. Hsu [25], examined the numerical 

performance pertaining to the explicit Cartesian methodologies in the context of compressible 

flows. Pattinson et al. [26], and Pattinson [27], reported a Cut Cell-based methodology that is 
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based on multi-grid and non-conforming Cartesian mesh methodology to model inviscid 

compressible and non-compressible flows.  

The specific objective of this work is to assess the numerical capability of the Cartesian Cut 

Cell method for predicting the lift coefficient when applied to NACA-0012. The rationale 

behind choosing the Cartesian Cut Cell method is that it is a new computational technique for 

mesh generation. This task is the crucial part of the numerical solution procedure in many 

engineering problems. The work presents model and mesh scenarios and the deviation 

between numerical solutions and experimental data. 

 

2. GOVERNING EQUATIONS: 

         To date, there has been relatively little work focusing on the Cartesian Cut Cell method 

for the full Navier-Stokes equations.  In the present work, the authors implemented a Cut Cell 

method based approach to solve the Navier-Stokes equations on an unstructured mesh in three 

dimensions. The use of unstructured grids in the solution of the Navier-Stokes equations is 

attractive as it exhibits a whole host of advantages. Accordingly, the approach is popular in 

the context of solving incompressible flow problems. Among the advantages the approach 

offers, is the capability of overcoming numerical problems associated with pressure velocity 

coupling. This problem, normally, occurs when a collocated grid is used [30,31]. 

 
𝛛(𝐮𝐢̅)

𝛛𝐱𝐢
= 𝟎                                                                                                   (1) 
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Where 𝒖𝒊 are the Cartesian components of the mean flow velocity vector u = (u1, u2, u3); 

𝒙𝒊 are the Cartesian coordinates of the position vector x=(x1, x2, x3); 𝑷  is the mean flow 

pressure; 𝒖𝒊
′𝒖𝒋

′   are Reynolds stresses or turbulent stresses, 𝝆 is the fluid density and 𝝊  is the 

kinematic viscosity of the fluid. 

Steady state incompressible flow around a airfoil shape with high Reynolds number was the 

basic assumption for the simulations.    

 

 The equations discretized in space using finite volume formulation on a Cartesian 

grid. The second order upwind scheme is used for convective terms.  

 The resulting discretized transport equation for a general variable 𝜙 using 

information at three time levels, n+1 , n  and  n-1  written as [32]: 
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Where nb is a generic subscript for neighbor cell; and Simp and  Sexp contain any further 

implicit and explicit sources respectively. Neighboring cells are labeled using the following 

convention: East (E), North (N) and Up (U) corresponding to the positive x1, x2, x3 directions 

and West (W), south (S) and Down (D) to the negative directions. The subscript P refers to 

the cell for which the flux is being calculated. 
 

3. CUTCELL METHOD: 

       One of the principle difficulties in solving a system of nonlinear partial differential 

equations in complex geometries involves the setting up of a suitable computational domain. 

If the system of PDE’s has a domain of smooth behavior and other rapid variation, the 

problem of designing the mesh is compounded. The problem of solving a system of PDE’s in 

3D incompressible flow can be divided into two major tasks, the construction of a suitable 

mesh and the specification of the PDE’s. In the present work, the authors addressed the issue 

of solving a system of PDE’s using what has become known as a Cut Cell Method. Cut Cell 

Cartesian meshing is a general purpose meshing designed for ANSYS FLUENT [32].  Make 

use of workbench to construct the airfoil shape and the Cut Cell mesh.  For a very simple 

mesh, a mesh specification is necessary, the mesh can then be refined based upon the 

specified criteria.  

       The framework is divided into four main sections: geometry construction, mesh 

generation, and results visualization.  The first step in solving the problem is to get a 

geometry on which the simulation is to take place.  The chosen geometry is constructed from 

basic geometrical entities such as points, lines, curves, planes, etc.  The various boundary 

options that are to be set include inlet, outlet, wall, and symmetry.  The Computational 

domain for this study consists of a NACA-0012 contained within a far field shape.  The mesh 

section parses the mesh specification file, which is the required mesh to model the flow 

around the object.  

      A Cut Cell meshing is a patch independent volume meshing approach with no necessity 

for manual geometry creation or breakdown, thus reducing the turnaround time necessary to 

construct the lattice. The Cut Cell algorithm is appropriate for a great range of functions, and 

due to the huge fraction of hex cells in the mesh, often creates enhanced results compared to 

tetrahedral schemes.  The general advantage of the CutCell mesh procedure is that it captures 

the size function values which are calculated. The lattice is then adaptively distinguished 

based on the local size function values. The cells intersected by the geometry are identified 

for projection. The edges intersected by the geometry were recognized and mesh edges to be 
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recovered are determined and used to build mesh faces.  Once the mesh faces were identified, 

cells were modified to recover these faces. [See Figure (1)] The boundary mesh is identified 

and divided on the original geometry. In the Cut Cell mesh approach the global inflation 

controls should be set first. It is essential to set inflation controls in advance of the Cut Cell 

meshing approach. If the global inflation was set after the generation of the Cut Cell, the re-

mesh feature would be activated.   

The outcome of the cutting algorithm was a Cut Cell mesh of a computational domain 

obtained from the original background mesh by removing elements completely contained in 

the geometry [28].   

Depending upon the geometry, and flow details, different mesh densities are essential to 

capture finer details of flow at regions of interest in the domain. The output of the cutting 

algorithm is a Cut Cell mesh of a computational domain obtained from the original 

background mesh by removing elements completely contained in the geometry, Figure (2) 

illustrates a generated Cut Cell meshing. 

 

 
 

Figure 1: Intersection between a background mesh   and an airfoil [27] 
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Figure 2: NACA0012Cut Cell Meshing 

 

4. SIMULATION AND RESULTS: 

The meshed file was imported into the CFD package Fluent to employ the steady 

incompressible flow simulations. The Boundary Layer was modeled to be fully turbulent and 

sst k-ω (Eq. 2) and transition k-kl omega (Eq. 3) [34]   were used for this work.  A Navier-

Stokes solution was computed around a NACA-0012 in a single value of the free stream 

Mach number, M∞=0.15, Re=6 million and angles of attack of 0º, 2º, 4º, 6º, 8º and 10º.  The 

Reynolds number is based on the airfoil chord, L, the free stream velocity, U∞, and kinematic 

viscosity, ν∞. The simulations were run for different mesh specifications and different angles 

of attack to demonstrate the accuracy the of Cut Cell Method in predicting the performance of 

aerodynamic forces. The results were validated against the available experimental data [29], 

but it should be noted that the deviation between experimental data and simulation results 

increases at higher angles of attack. The lift caused by the force perpenduclar to the flow is 

 

𝐶𝐿 =
𝐹𝐿

1
2 𝜌𝑈∞

2 𝐴
                                                                                                                                           (4) 

where A is the area of the airfoil,  𝐶𝐿is the lift coefficient and 𝑈∞is the free stream velocity. 

The authors presented the lift as Tables and Figures to show the simulation results. The 

computational results were compared to the experimental data obtained from the wind tunnel. 

Both the simulation work and experimental data were run on the same conditions. 

     Table (1) illustrates the simulation and experimental lift Coefficients [29] for different angle of 

attack for lift coefficients predication for both sst k- ω (Eq. 2) and transition k-kl omega (Eq. 3) 

models. It can be seen from columns two, three, and four the good agreement between the 

computational and the experimental results for both models for different mesh size to predict 

the lift coefficient. The error percent of both k-ω and k-kl omega are tabulated in Table (1). 

One can see the accuracy of the used models for predicting the lift coefficient. The simulation 

and experimental data for lift coefficients are plotted on Figure (3). For 2 degree  angle of 

attack several cases were run for different parameters such as; boundary layer thickness, 

inflation options and meshes size. Table (2) shows the different mesh size and the results 
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plotted on Figures (4-5). We can determine that 9 B.L.T (Boundary Layer thickness), fine 

mesh and Last Aspect Ratio inflation option demonstrated good results compared to 

experimental data for lift predication. 

5. CONCLUSIONS: 

 The most important consideration in aerodynamic design is the accuracy of the turbulent 

model utilized for simulating complex turbulent flows. Along with computer and numerical 

simulation techniques, turbulence modeling has improved over the last decade to match the 

challenges of analyzing current aerodynamic systems. The Cut Cell numerical method was 

validated in three-dimensional viscous steady incompressible flow utilizing NACA-0012. The 

present results obtained for NACA-0012 are computed using the two models available in 

ANSYS FLUENT, namely sst k- ω (Eq. 2) and transition k-kl omega (Eq. 3) models. It was 

shown in this study that the Cut Cell mesh method has the ability to generate high quality 

mesh which captures the details of the viscous boundary layer easily. Future work will focus 

on using the Cut Cell Method for more sophisticated turbulence models and mesh refinement 

to predict the lift coefficients for high left devices with flap. 
 

Table 1: The simulation and experimental lift Coefficients for different angle of attack for lift 

coefficients prediction 

Alpha k-kl omega K-omega EXP. 

k-kl omega 

error % 

K-omega 

error % 

0 0.0000 0.0001 0.0000 0.0000 0.0000 

2 0.2190 0.1855 0.2200 -0.4517 -15.7045 

4 0.4383 0.4004 0.4400 -0.3864 -9.0091 

6 0.6604 0.6450 0.6500 1.6015 -0.7769 

8 0.8751 0.8459 0.8700 0.5862 -2.7678 

10 1.0901 1.0433 1.0700 1.8785 -2.4953 

 

Table 2: Three different mesh sizes were tested for angle of attack equal 2 deg.  

 Element size of 

wing soft faces 

Body sizing Number of 

elements 

Coarse 10000 100000 6701569 

Fine 1.8 mm 500 mm 8655456 

X-fine 1.8 80 13805201 
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Figure 3: Lift Coefficients for .VS.  Angle of attack 

 

  

 
Figure 4: Lift coefficients for different Boundary layer thickness. 
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Figure 5: Lift coefficients for different mesh size. 
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NOMCLATURE 

 
D Down u  Mean Velocity 

E East ' '

i ju u Reynolds Stresses 

LES Large Eddy Simulation U UP 

N North AOA Angle of Attack 

nb Neighbor cell expS Explicit source 

S South impS Implicit source 

SST  Shear-Stress Transport   
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 الملخص
 

لموائع الحسابية التي تستخدم الطرق العددية لحل المسائل التي تتضمن سريان الموائع وتحليل في ظل التطور لميكانيكا ا

الحواسيب لإجراء الحسابات اللازمة للتوصل الى الحلول التقريبية لحل معادلات نافييرستوكس ,  باستخدامنتائج المحاكاة 

تستغرق أيام أو قد حول الأشكال الهندسية التي  عنقوديةال يحتاج المهندسون إلى إنشاء شبكات عالية الجودة  من الشبكات

رتيزية المقطوعة هي احدي هذه التقنيات االخلية الكتعتبر و حل هذه المشكلةلساعات قليلة. تم استحداث عدة طرق 

(Cartesian Cut Cell Methodتركز الدراسة الحالية على مدى  تأثير استراتيجيات تشابك الخلايا الك ,)زية يرتا

رتيزية المقطوعة بأنها االمقطوعة المختلفة على دقة الأداء الديناميكي فى الهواء الجوي. يمكن وصف طريقة الخلية الك

https://www.sciencedirect.com/book/9780081021644/engineering
mailto:elgamate@yahoo.com
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منهجية للخلايا المقطوعة على الاشكال الهندسية باستخدام عملية تتضمن قطع  خلايا مستطيلة / سداسية على شبكة الاشكال 

شكل الجنيح  تصميمل  ANSYS FLUENT برنامج المحاكاة استخدمهذه الدراسة الهندسية, من اجل تحقيق الهدف من 

استعمل نموذجين للسريان المضطرب المستقر الغير انضغاطي المتاحة في البرنامج و  لقد, Cartesian Cut Cellوشبكة 

عملية المحاكاة الرقمية ثلاثية الأبعاد حول الجنيح  , تمتk-kl-ω  (Eq. 3) modelو   k-ω  model (Eq. 2)هما 

NACA-0012 متغيرات تباين كثافة الشبكة. أظهر استخدام طريقة الخلية و, متاخمةال وفحص معامل الرفع, سمك الطبقة

هذه الدراسة أن أوضحت ,  السوائل الحسابية والبيانات التجريبية اجداً مع نتائج ديناميك ارتيزية المقطوعة اتفاقًا جيدً االك

 , اللزجة بسهولةالمتاخمة طريقة الخلية الكرتيزية المقطوعة لديها القدرة على إنشاء شبكة عالية الجودة تلتقط تفاصيل الطبقة 

 في المستقبل سيتم توسيع نطاق استخدام  هذه التقنية لنماذج أكثر تعقيداً للتنبؤ بمعاملات الرفع.

 

 تقدير. ;الشبكة ;الرفع ;معامل ;الخلية المقطوعة ;الكرتيزيةمفتاحية: الكلمات ال


